Overview

Examples: Tableau and Sequent Calculi for Classical Propositional Logic

Part 1 Theory: 45 minutes + 15 minute break with questions

Part 2: Practice: 45 minutes then 15 minutes break with questions

Part 3: Advanced Topics 45 minutes then 15 minutes break with questions
tabpc.ml: CPL Using Negation Normal Form

CONNECTIVES ["~" ; "&" ; "v" ; "->" ; "<->"]
GRAMMAR formula := ATOM | Verum | Falsum
| formula & formula | formula v formula
| formula -> formula | formula <-> formula
| ~ formula ;;
expr := formula ;;
END

open Pclib
TABLEAU RULE Id { a } ; { ~ a } === Close END
RULE False Falsum === Close ENDRULE And { A & B } === A ; B ENDRULE Or { A v B } === A | B END

END
STRATEGY := tactic ((False ! Id ! And ! Or)*)
PP := List.map nff (* PreProcess input formula into nff *)
NEG := List.map neg (* Negate input formula by default *)
MAIN
seqpc.ml: Sequent Calculus for CPL

CONNECTIVES ["\sim" ; "\&" ; "\lor" ; "\rightarrow" ; "\leftrightarrow" ; "\Rightarrow"]

GRAMMAR

formula :=
 ATOM | Verum | Falsum
 | formula & formula
 | formula \lor formula
 | formula \rightarrow formula
 | formula \leftrightarrow formula
 | \sim formula

; ;

expr := formula ; ;

node := set => set ; ;

END
SEQUENT

RULE Id Close === { A } => { A } END
RULE False Close === { Falsum } => END
RULE True Close === => { Verum } END
RULE AndL A ; B => === { A & B } => END
RULE AndR => A | => B === => { A & B } END
RULE OrL A => | B => === { A v B } => END
RULE OrR => A ; B === => { A v B } END
RULE NegR A => === => { ~ A } END
RULE NegL => A === { ~ A } => END
RULE ImpL => A | B => === { A -> B } => END
RULE ImpR A => B === => { A -> B } END
RULE IffL (A -> B) & (B -> A) => === { A <-> B } => END
RULE IffR => (A -> B) & (B -> A) === => { A <-> B } END END
let exit = function
| "Open" -> "Not Derivable"
| "Close" -> "Derivable"
| s -> assert(false)

EXIT := exit(status@1)

STRATEGY := tactic ((Id
 ! True ! False
 ! NegL ! NegR
 ! AndL ! AndR
 ! ImpL ! ImpR
 ! OrL ! OrR
 ! IffL ! IffR)*)

MAIN
Basic Theory of Tableau Calculi

Tableau: finite single-rooted tree of nodes

Nodes: typically sets (or multisets or lists) of formulae

Rules:

\[
\frac{N}{d_1 \cdots d_n} \quad \text{(rule name)} \quad \text{Numerator} \quad \text{denominators} \quad \text{pattern} \quad \text{constructors}
\]

Rule Applicable: if numerator pattern matches contents of the current node

Rule Action: extends tableau by creating children of current node according to the pattern specified by the denominators

Examples:

(And) rule extends the tableau by adding a single child while (Or) rule extends the tableau by adding two children causing or-branching
Basic Theory of Tableau Calculi Continued

Closed Branch: if the current node contains $A; \neg A$ or \bot

Closed Tableau: if every or-branch is closed

Open Branch: if no rule applicable to the current node

Open Tableau: if some or-branch is open

Example: $(Id) \quad \frac{A; \neg A; X}{\times} \quad \text{pattern}\quad \text{special mark to indicate closure}$

Backtracking: if current node is closed or no rule is applicable then backtrack to last choice-point

Examples: $(Or) \quad \frac{A \lor B; X}{A; X \mid B; X} \quad \text{so (Or) rule creates a choice-point}$
Different Forms of Non-Determinism (Choice-points)

Node Choice: which leaf of the current tableau is the current node?

Rule Choice: which of the applicable rules to apply to the current node?

Formula Choice: which formula is principal for the chosen rule application?

And-Branching: results from all three forms of non-determinism

Traditional Tableaux: hide And-branching but show Or-branching explicitly
And-Branching from Formula Choice

Formula Choice: which formula is principal for the chosen rule application?

Traditional Tableaux: hide And-branching but show Or-branching explicitly

Two Different Or-Trees: of which only one needs to close

One And-Or-Tree: of which only one And-choice has to close
And-Branching From Rule Choice

Rule Choice: which of the applicable rules to apply to the current node?

Two Traditional Tableaux: of which only one needs to close

One And-Or Tableau: of which only one And-choice has to close
Controlling the Various Forms of Non-Determinism

Node Choice: depth-first search, breadth-first search, iterative deepening, heuristic choice (assume depth-first search)

Rule Choice: strategy for applying rules by sorting into invertible (static) and non-invertible rules (transitional)

Example: apply invertible rules in any order until none applicable, then apply a non-invertible rule and backtrack over the non-invertible rule choices if the chosen non-invertible rule does not close current branch

Formula Choice: rarely specified but can be done using more advanced techniques
A Tableau Calculus for CPL Using Negation Normal Form

NNF: implication-free formulae with negations appearing only in front of atoms

Theorem: every formula has a CPL-equivalent formula in nnf

Proof: use the distribution laws to push negations inwards

\[
(\varphi \rightarrow \psi) \leftrightarrow (\neg \varphi) \lor \psi \quad \neg \neg \varphi \leftrightarrow \varphi \quad \neg (\varphi \land \psi) \leftrightarrow (\neg \varphi) \lor (\neg \psi) \quad \text{etc.}
\]

Rules:

\[
\begin{align*}
\text{(Id)} & \quad p; \neg p; X \\
\times & \\
\end{align*}
\]

\[
\begin{align*}
\text{(\land)} & \quad \frac{A \land B; X}{A; B; X} \\
\end{align*}
\]

\[
\begin{align*}
\text{(\lor)} & \quad \frac{A \lor B; X}{A; X \mid B; X} \\
\end{align*}
\]

Node Choice: depth first search (say)

Rule Choice: prefer (Id) over (\land) over (\lor) to reduce branching and don’t backtrack over rule choices since both (\land) and (\lor) are invertible

Formula Choice: don’t backtrack over formula-choice points
End of Part 1
Defining Connectives

CONNECTIVES [semicolon separated list of double-quoted ASCII strings]

Keyword: CONNECTIVES must be in upper-case

Double-quotes: " . "

Order: is irrelevant

Example: CONNECTIVES ["~" ; "&" ; "v" ; "->" ; "<->"]

Exceptions: cannot use \@ | ATOM { } ; ; as connectives
Defining Formulae and expr

GRAMMAR double-semi-colon-separated list of BNF productions END

Keyword: GRAMMAR and END must be in upper-case

Keyword: ATOM represents atoms and must be in upper-case

Constants: must start with upper-case (see below)

Example: GRAMMAR

 formula := ATOM | Verum | Falsum
 | formula & formula | formula v formula
 | formula -> formula | formula <-> formula
 | ~ formula ;;

 expr := formula ;;

END

Note: the final ;; before END is necessary!

Note: unary connectives bind tighter than binary ones
Defining Tableau Rules

RULE rule-name numerator-pattern horizontal-separator
list-of-denominator-patterns ... **END**

Numerator Pattern: specifies how to instantiate meta-variables in numerator pattern to **partition** the contents of current node

Denominator Patterns: specifies how to construct the children of the current node using the instantiated meta-variables from the numerator

Notation: lower-case patterns are atoms and upper-case patterns are not

Unrestricted Patterns: like \(x \) are instantiated arbitrarily and **maximally**

Restricted Patterns: like \(A \ & \ B \) are instantiated as specified and **maximally**

Principal Formulae: are specified by enclosing them in braces \{ and \}
Examples of Rule Definitions: The And Rule

RULE And
 \{A \& B\} ; X
===
 A ; B ; X
END

RuleName: And

Numerator: choose a conjunction from the current node, thereby instantiating A and B, and instantiate X with (the list of) all other formulae in current node

Horizontal Separator ===== means don’t backtrack over formula choice

Denominator: construct one and-child of the current node containing (the flattened list consisting of) the left conjunct (A), the right conjunct (B), and all other formulae (X) but exclude the principal formula A \& B itself
Examples of Rule Definitions: The Or Rule

RULE Or
 \{A \lor B\} ; X
=======
 A ; X | B ; X
END

RuleName: Or
Numerator: choose a disjunction from current node, thereby instantiating both A and B, and instantiate X with (list of) all other formulae in current node
Horizontal Separator ======= means don’t backtrack over formula choice
Denominator: construct two or-children of the current node. A left-child containing (the flattened list consisting of) the left conjunct (A) and all other formulae (X). A right-child containing (the flattened list of) the right conjunct (B), and all other formulae (X), but exclude the principal formula A \lor B itself from both children
Examples of Rule Definitions: The \textbf{Id} Rule

\begin{verbatim}
RULE Id
 \{a\} ; \{ \sim a \} ; X

 Close

END
\end{verbatim}

\textbf{RuleName:} \textbf{Id}

\textbf{Numerator:} choose an atomic formula a and its negation $\sim a$ from current node, and instantiate X with (list of) all other formulae in current node

\textbf{Horizontal Separator} ===== means don’t backtrack over formula choice

\textbf{Denominator:} close the current branch (and initiate backtracking)
Synthesising Result *status* Bottom Up

Rules:

\[
\begin{align*}
& (\text{Id}) \quad \frac{p; \neg p; X}{X} \\
& (\wedge) \quad \frac{A \wedge B; X}{A; B; X} \\
& (\vee) \quad \frac{A \vee B; X}{A; X | B; X}
\end{align*}
\]

Status: Every rule manipulates an internal variable called *status*

Example: *Id* rule sets *status* := closed

Example: *And* rule passes up the *status* of its child unchanged

Example: *Or* rule passes up the *status* of its children according to “if both children have *status* = closed then closed else open”

Or-branching: if all children are closed then closed else open

And-branching: if all children are open then open else closed
Exploring the Search Space and Synthesising Results

Core: is a procedure to visit a tree generated by repeated application of a finite set of rules to an initial node

Visit: is basically an interpreter for the strategy language

Operation: returns the result of the visit of the tree generated by applying the STRATEGY to the current node
Systematic Proof Search Via Strategies

Strategy: a specification of how to apply the rules to the current node

Tactics: a strategy is built out of tactics using a tactic language

\[t ::= \text{skip} \mid \text{fail} \mid \text{Rule } \text{r} \mid \text{Alt}(t, t) \mid \text{Seq}(t, t) \mid \text{Repeat}(t) \]

Tactic Success: a tactic succeeds according to its form viz:

- **skip** always succeeds
- **fail** always fails
- **Rule r** succeeds if rule r is applicable to the current node else fails
- **Alt(t1, t2)** succeeds if t1 succeeds or else t2 succeeds on the current node
- **Seq(t1, t2)** succeeds if t1 succeeds on the current node, producing a tableau with leaves \(l_1, l_2, \ldots, l_n \) and then t2 succeeds on each leaf \(l_i \)
Example: \(\text{Seq}(t_1, t_2) \)

Rules:

\[
\begin{align*}
\text{(Id)} & \quad \frac{p; \neg p; X}{\times} \\
\text{(\&)} & \quad \frac{A \land B; X}{A; B; X} \\
\text{(\lor)} & \quad \frac{A \lor B; X}{A; X | B; X} \\
\text{(K)} & \quad \frac{\langle \rangle A; [] X; Z}{A; X}
\end{align*}
\]

Example: \(\text{STRATEGY} = \text{tactic} (\text{Or}; \text{K}) \)

Or: succeeds on the root node and produces two leaves

K: \((K)\) succeeds on the left leaf but not on the right one

Result: Strategy \(\text{Seq(Or, K)} \) fails
Example: \(\text{Alt}(t_1, t_2) \)

Rules:
\[
\text{(Id)} \quad \frac{p; \neg p; X}{\times} \quad \text{(\&)} \quad \frac{A \land B; X}{A; B; X} \quad \text{(<\lor>)} \quad \frac{A \lor B; X}{A; X | B; X} \quad \text{(K)} \quad \frac{\langle \rangle A; []X; Z}{A; X}
\]

Example: \(\text{STRATEGY} = \text{tactic (Id ! And ! Or ! K)} \)

Example:

\[
\langle \rangle p_0; []\neg p_1; \langle \rangle p_1
\]

\[
p_0; \neg p_1 \quad p_1; \neg p_1
\]

Result: \(\text{Id} \) fails, \(\text{And} \) fails, \(\text{Or} \) fails, \(K \) succeeds and creates And-choice for each \(\langle \rangle \)-formula \(\langle \rangle p_0 \) and \(\langle \rangle p_1 \)

What Next? ... nothing, we did not say what to do after one successful application of the tactic

Result: Strategy succeeds but does not find closed tableau since \(\text{Id} \) is never applied to right child
Example: \(\text{Repeat}(t) \)

Rules:

\[
\begin{align*}
\text{(Id)} & \quad \frac{p; \neg p; X}{X} \\
\text{\(\land\)} & \quad \frac{A \land B; X}{A; B; X} \\
\text{\(\lor\)} & \quad \frac{A \lor B; X}{A; X | B; X} \\
\text{(K)} & \quad \frac{\langle \rangle A; []X; Z}{A; X}
\end{align*}
\]

Example:

\[
\text{let } t = \text{tactic (Id ! And ! Or)}
\]

in \(\text{STRATEGY} = \text{tactic (t ; t)} \)

Example:

\[
\left\langle \langle p_0; [] \neg p_1; \langle p_1 \rangle \right\rangle
\]

\[
p_0; \neg p_1
\]

\[
p_1; \neg p_1
\]

Result: \(\text{Id fails, And fails, Or fails, K succeeds and creates And-choice for each } \langle \rangle\text{-formula } \langle p_0 \rangle \text{ and } \langle p_1 \rangle \)

Left leaf: all rules fail so \(t \) fails

Right leaf: \(\text{Id succeeds and Closes right branch} \)

Result: \(\text{STRATEGY fails due to left leaf failure} \)
Committing to Rule Choices

Rule Choice: multiple rules are applicable to current node

Invertible Rules: different choices between And and Or do not alter the final answer since these rules are invertible

Commit to Rule Choice:

let STRATEGY = tactic ((Id ! And ! Or ! K)*)
Example: the modal logic K

Rules: (Id) \[
p; \neg p; X \quad \times \quad (\land) \quad A \land B; X \quad (\lor) \quad A \lor B; X \quad (K) \quad \langle \rangle A; [] X; Z
\]

Example: STRATEGY = tactic (Id ! And ! Or ! K)*

Example:

\[
\langle \rangle p_0; [] \neg p_1; \langle \rangle p_1
\]

\[
p_0; \neg p_1
\]

\[
p_1; \neg p_1
\]

Result: Id fails, And fails, Or fails, K succeeds and creates And-choice for each \langle \rangle-formula \langle \rangle p_0 and \langle \rangle p_1

Left leaf: all rules fail so * succeeds

Right leaf: Id succeeds and Closes right branch and no rule is applicable so * succeeds

Result: Strategy succeeds and does find closed tableau
Example: k.ml

CONNECTIVES [... ; "[" ; "]" ; "<" ; ">"]

GRAMMAR formula := ...
 | [] formula
 | <> formula ;;
 ...

END
open Klib
TABLEAU ...
 RULE K { <>A } ; []X ; Z

 A ; X

END (* Dotted lines mean "don’t commit" to formula choice *)
END
STRATEGY := tactic ((False ! Id ! And ! Or ! K)*)
...

27
End of Part 2
Backtracking Over Formula Choices

RULE K { <>A } ; []X ; Z

A ; X

END (* Dotted lines mean "don’t commit" to formula choice *)
END

Formula Choices:

\[\langle \varphi_1; \cdots; \varphi_n; []X; Z \rangle \]

\[\varphi_1; X \]

\[\varphi_i; X \]

\[\varphi_n; X \]

Rule Semantics: apply K rule to obtain all children, explore the first child, if its visit returns status = Close then backtrack higher with status = Close else explore next child ...

Result: Close if some child Closes else Open
Example: kd.ml

TABLEAU

RULE KD (<>A) ; []X ; Z

A ; X

END (* Dotted lines mean "don’t commit" to formula choice *)

END

STRATEGY := tactic ((False ! Id ! And ! Or ! KD)*)

Note: parentheses “(.)” as opposed to braces “.” surrounding the principal formula specifies that it can be missing and rule will still apply
Core Algorithm Components

Rule Condition: check if the rule instance obeys rule side conditions

Rule Action: create the denominators by applying the rule instance

Branch Condition: check result of visit of last child and decide whether to visit the next child

Rule Backtrack: collect results of visited children and synthesise result of rule application to the current node
Defining Histories and Variables

TWB: provides three generic data structures to define histories/variables

- **TwbSet.Make** (ValType): set of elements of type ValType.t
- **TwbMSet.Make** (ValType): multiset of elements of type ValType.t
- **TwbList.Make** (ValType): list of elements of type ValType.t

Signature:

```ocaml
module type ValType =
  sig
    type t
    val copy : t -> t
    val to_string : t -> string
  end
```


TWB/OCaml Signature of ValType

Example: define a module FormulaSet for “set of formulae” by instantiating the functor TwbSet.Make with type formula as ValType

```ocaml
module FormulaSet = TwbSet.Make(
  struct
    type t = formula
    let copy s = s
    let to_string = formula_printer
  end
)
```

HISTORIES

(UNBOXES : FormulaSet.set := new FormulaSet.set)

END
method **add_filter**: add an element that respects filter condition

method **addlist**: add a list of elements

method **mem**: check if an element is present

method **elements**: return the list of element in the object

method **is_empty**: check if the object is empty

method **empty**: return an empty instance of the object

Other methods: **filter, hd, del, length, cardinal, intersect, union, subset, is_equal ...**
Twplib.ml

let add (l, h) = h#addlist l
let notin (l, h) = not(h#mem (List.hd l))
let isin (l, h) = h#mem (List.hd l)
let not_emptyset l = not (l#is_empty)
let clear h = h#empty
Histories for Modal Logic KT

KT: extension of Hilbert system for K with reflexivity via \([]\varphi \to \varphi \)

Rule: (\(T\)) \[
\begin{array}{c}
[]A; X \\
A; []A; X
\end{array}
\]

loops but incomplete without \([]A \) in denominator

History: UNBOXES to keep track of A's from \((T)\) applications

```
HISTORIES
   (UNBOXES : FormulaSet.set := new FormulaSet.set)
END
RULE T { [] A } ; Z
    ================
    A ; Z
    COND [ notin(A, UNBOXES) ]
    ACTION [ UNBOXES := add(A, UNBOXES) ]
END
STRATEGY := tactic ( (False ! Id ! And ! Or ! T ! K)*)
```
Exercise: A Better Version of the K Rule for KT

Old K Rule:

RULE K { <>A } ; [] X ; Z --- A ; X END

Better K Rule for KT:

RULE KT { <>A } ; Z --- A ; UNBOXES END

Exercise: explain the differences in these rules

Beware: it is tempting to think that we can omit A from the denominator of the T rule (previous slide) on the grounds that it is recoverable from UNBOXES

Exercise: why is A essential in the denominator of the T rule?
Modal Logic \(\text{K4} \)

K4: extension of Hilbert system for K with transitivity via \([] \varphi \to [\[] \varphi \)

Core: denominator of the \(\text{K4} \) rule

Rule: \((K4)\) \[
\frac{\langle A; [] X; Z \rangle}{A; X; [] X}
\]

Loops due to \([] X \) in denominator

Example:

\[
\begin{align*}
&\langle p_0; [] \langle p_0 \rangle \rangle \\
\downarrow \\
&p_0; \langle p_0; [] \langle p_0 \rangle \rangle \\
\downarrow \\
&p_0; \langle p_0; [] \langle p_0 \rangle \rangle \\
\downarrow \\
&\cdots
\end{align*}
\]

Loop Check: stop when we see the same “core”
Loop Checking in K4

HISTORIES
CORES : Set of Formula := new Set.set
END

Meaning: declare a history with default value of emptyset

let addcore(a, b, h) = h#addlist(a@b)

TABLEAU
RULE K4 { <>A } ; []X ; Z

 A ; X ; []X

COND [loopcheck(<>A, []X, CORES)]
ACTION [CORES := addcore(<>A, []X, CORES)]
END
END
Heuerding’s Calculus for K4

Heuerding (TAB 96?): boxes accumulate so stop when we see the same diamond formula twice with no new boxes appearing in between

Tracking Boxes: we need a history to track boxes to evaluate whether there are new boxes

Tracking Diamonds: we need a history to track diamonds to evaluate whether we are seeing the same diamond twice

HISTORIES
(DIAMONDS : FormulaSet := new FormulaSet.set);
(UNBOXES : FormulaSet := new FormulaSet.set)
END
Heuerding’s Calculus for K4

Diamonds: in diamond-history are blocked from being principal in (K4) rule but are added to diamond-history otherwise

```plaintext
RULE K4 { <>A } ; []X ; Z

A ; X ; []X

COND [ notin(A, DIAMONDS) ]

ACTION [ DIAMONDS := add(A, DIAMONDS) ]

END
```
Heuerding’s Calculus for K4

Diamonds: in diamond-history are blocked from being principal in (K4) rule but are added to diamond-history otherwise

```
RULE K4   { <>A } ; []X ; Z
           -----------------------
            A ; X ; []X
COND    [ notin(A, DIAMONDS) ]
ACTION  [ DIAMONDS := add(A, DIAMONDS) ]
END
RULE NewBox { []A } ; Z === []A ; Z
           COND    [ notin(A, UNBOXES) ]
           ACTION [ UNBOXES := add(A, UNBOXES);
                         DIAMONDS := emptyset(DIAMONDS) ]
END
```

New Box: must empty box-history to release blocked diamonds

Unblock: these diamonds by putting `DIAMONDS` to the emptyset

Exercise: do we really need `[]A` in the denominator?
Cross-sibling Blocking

RULE K4 { <>A } ; []X ; Z

A ; X ; []X

COND [notin(A, DIAMONDS)]

ACTION [DIAMONDS := add(A, DIAMONDS)]

END

Example: given two formula choices $\langle \rangle p_1$ and $\langle \rangle p_2$ in the K_4 rule, each sibling should not redo the work of the other

\[
\langle \rangle p_1; [](\langle \rangle p_1 \land \langle \rangle p_2); \langle \rangle p_2
\]

\[
p_1; \langle \rangle p_1 \land \langle \rangle p_2
\]

\[
p_2; \langle \rangle p_1 \land \langle \rangle p_2
\]
Explicit And-branching

And-branching: is created implicitly by rule and formula choices

Disadvantage 1: difficulty to collect the results of the And-siblings to compute a result for the given rule

Disadvantage 2: not possible to pass information from one And-sibling to another

Explicit: And-branching in a rule specified using || as a separator between denominators

Explicit: Or-branching in a rule specified using | as a separator between denominators
Explicit And-branching in Modal Logic K4

RULE K4
{ <>A } ; []X ; Z

--

A ; X ; []X

COND notin(A, DIAMONDS)
ACTION [DIAMONDS := add(A, DIAMONDS)]
END

RULE K4H
{ <>A } ; <>Y ; Z

=================================

A ; UNBOXES || <>Y

COND notin(A, DIAMONDS)
ACTION [[DIAMONDS := add(A,DIAMONDS);
 DIAMONDS := add(Y,DIAMONDS)] ;
 [DIAMONDS := add(A,DIAMONDS)]]
END
Compiling and Executing Provers Using the TWB

Compiling .ml files to produce .twb files: ./twbcompile pc.ml

Running .twb files: ./pc.twb source/pc/close.twb

Noneg Option: the TWB negates the input formula by default

 ./pc.twb source/pc/close.twb --noneg

Various Flags for Debugging:

 ./pc.twb source/pc/close.twb --trace --verbose
End of Part 3
Shorthand Defaults for Rules

Default Minimalism: X below left is not needed since it does not change.

$$\frac{A \lor B; X}{A; X \mid B; X} \quad \text{RULE Or } \{ A \lor B \} \implies A \mid B \text{ END}$$

Default Rewriting: $A \& B$ without braces rewrites all conjunctions at once.

$$\frac{A \land B; X}{A; B; X} \quad \text{RULE And } A \& B \implies A ; B \text{ END}$$

Beware: $A \lor B$ without braces rewrites all disjunctions at once but is wrong!

$$\frac{A \lor B; X}{A; X \mid B; X} \quad \text{RULE Or } A \lor B \implies A \mid B \text{ END}$$
Backtracking Over Formula Choices in Or-Rule

$$\frac{A \lor B; X}{A; X | B; X}$$

RULE Or \{ A \lor B \} \implies A $|$ B END

Forbidden: to leave formula-choice in Or-branching rules

RULE Or-Verboten \{ A \lor B \} \implies A $|$ B END

Reason: how to specify which branch of which And-choice?

Solution: RULE Or \{ A \lor B \} \implies A # B END
RULE Hash \{ A # B \} \implies A $|$ B END
STRATEGY = tactic ((Id ! And ! (Or ; Hash) ! K)*)
More Complex Structure of a Node

Keyword: node is allowed in the GRAMMAR specification

By Default: a node is a set

Keywords: set, mset, singleton allowed

Node is Multiset: node := mset ;;

Node is Sequent of Sets: CONNECTIVES [... "=>"]
 node := set => set ;;

Node is Sequent of MultiSets: CONNECTIVES [... "=>"]
 node := mset => mset ;;

Node is Sequent with Singleton on RHS: CONNECTIVES [... "=>"]
 node := mset => singleton ;;
Sequent Calculus g4ip

CONNECTIVES ["!"; "&"; "v"; "->"; "<-"; "=>"; "#"]
GRAMMAR

formula :=
 ATOM | Verum | Falsum
 | formula & formula
 | formula v formula
 | formula -> formula
 | formula <-> formula
 | ! formula (* intuitionistic negation *)
 | # formula (* marking device explained soon *)

expr := formula ;
node := mset => singleton ;
END
SEQENT (* read rules upside down from TABLEAU *)
RULE Id Close (* ie derivation found *)

==============
{ a } => { a }
==============
END

RULE False Close

==============
{ Falsum } =>
==============
END

RULE True Close

==============
=> { Verum }
==============
END
RULE NegL A -> Falsum =>

================

{ ! A } =>

END

RULE NegR => A -> Falsum

=================

=> { ! A }

END

RULE AndL

A ; B =>

=============

{ A & B } =>

END
RULE AndR (* traditional or-branching *)
 => A | => B
 =============
 => { A & B }
END

RULE OrL (* traditional or-branching *)
 A => | B =>
 =============
 { A v B } =>
END

RULE OrR (* note the non-traditional and-branching *)
 => A || => B
 =============
 => { A v B }
END
RULE ImpR

 A => B

=========

=> \{ A \rightarrow B \}

END

RULE ImpMP (* modus ponens on atomic formulae *)

 a ; B =>

==================

{ a } ; { a \rightarrow B } =>

END

RULE ImpVerum

 Verum ; B =>

=====================================

{ Verum } ; { Verum \rightarrow B } =>

END
RULE ImpNeg

$(A \rightarrow \text{Falsum}) \rightarrow B \Rightarrow$

\Rightarrow

$\{ (\neg A) \rightarrow B \} \Rightarrow$

END

RULE ImpAnd

$C \rightarrow (D \rightarrow B) \Rightarrow$

\Rightarrow

$\{ (C \& D) \rightarrow B \} \Rightarrow$

END

RULE ImpOr

$C \rightarrow B ; D \rightarrow B \Rightarrow$

\Rightarrow

$\{ (C \lor D) \rightarrow B \} \Rightarrow$

END
RULE Hash

\[G ; \# (C \rightarrow D) \rightarrow B \Rightarrow E \]

\[G ; \{ (C \rightarrow D) \rightarrow B \} \Rightarrow E \]

END

RULE ImpImp

\[G ; D \rightarrow B ; C \Rightarrow D \mid B ; G \Rightarrow E \]

\[G ; \{ \# (C \rightarrow D) \rightarrow B \} \Rightarrow E \]

END

END
let exit = function
 | "Open" -> "Not Derivable"
 | "Close" -> "Derivable"
 | s -> assert(false)

EXIT := exit(status@1)

STRATEGY :=
 let saturate = tactic (NegR ! NegL ! Id ! False ! True ! AndL ! ImpNeg ! ImpVerum ! ImpOr ! ImpAnd ! OrL ! AndR ! ImpMP ! ImpR)
 in let hashimp = tactic (Hash ; ImpImp)
 in tactic ((saturate ! (OrR || hashimp))*)

MAIN
Memoization

Memoization: is possible for any side-effect-free function f because two different calls to $f(x)$ must give the same result.

Remember: the pair $(x, f(x))$ for selected x

Example: keyword CACHE

```
RULE K
{ <> A } ; [ ] X ; Z
-----------------------------
A ; X

CACHE := true
END
```

So x is $(A ; X)$ and $f(x)$ is visit $(A ; X)$
Simplification

RULE And

\{ A \& B \} ; X

simpl(A, B) ; simpl(B, A) ; simpl(simpl(X, A), B)

END

RULE Or

\{ A \lor B \} ; X

A ; simpl(X, A) | simpl(B, \sim A) ; simpl(simpl(X, B), \sim A)

END
let rec simpl phi a =
 let rec aux phi a = match a with
 | formula (~ b) when b = a -> formula(Falsum)
 | formula (~ b) -> formula (~ [aux phi b])
 | formula (b & c) ->
 formula ([aux phi b] & [aux phi c])
 | formula (b v c) ->
 formula ([aux phi b] v [aux phi c])
 | _ when phi = a -> formula(Verum)
 | _ when phi = (nnf (formula (~ a))) -> formula(Falsum)
 | _ -> a
 in boolean (aux phi a)
\(\neg \varphi \lor \varphi \rightarrow T\) \quad \(\varphi \lor T \rightarrow T\) \quad \(\varphi \lor \bot \rightarrow \varphi\) \quad \(\varphi \lor \varphi \rightarrow \varphi\)

\(\neg \varphi \land \varphi \rightarrow \bot\) \quad \(\varphi \land T \rightarrow \varphi\) \quad \(\varphi \land \bot \rightarrow \bot\) \quad \(\varphi \land \varphi \rightarrow \varphi\)

\(\neg \bot \rightarrow T\) \quad \(\neg T \rightarrow \bot\)
Variables

Variables: allow us to pass information from children to parent nodes

Example: status
How Do I get the TWB ?

➤ One The Web:

http://twb.rsise.anu.edu.au

➤ Via Darcs:

Conclusions

➤ It is generic and extensible

➤ Modular framework to build theorem provers

➤ It is based on a general tableau algorithm

➤ Front-end for tableau calculi

➤ The TWB targets both technical and non-technical users;

➤ It can be used to experiment with new logics, but also to build specialized TPs;

➤ It is based on a naive algorithms, but it can be easily extended to incorporate well known optimizations or to experiment with new ones.
Our Mantra: Simple things should be simple, difficult things should be possible.
Thus, the double bar “||” intuitively means: “If the sub-tableau for the first i denominators are all open, then explore the $(i + 1)^{st}$ sub-tableau. This is opposite to the single bar “|” traditionally used to specify the (\lor)-rule: “if the first branch is closed, then explore the second branch”.
Core library by lines of code (loc)

<table>
<thead>
<tr>
<th>component</th>
<th>loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>core</td>
<td>464</td>
</tr>
<tr>
<td>tableau library</td>
<td>818</td>
</tr>
<tr>
<td>syntax library</td>
<td>1624</td>
</tr>
<tr>
<td>data-type library</td>
<td>664</td>
</tr>
<tr>
<td>application (cli)</td>
<td>226</td>
</tr>
<tr>
<td>total</td>
<td>3800</td>
</tr>
</tbody>
</table>