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Abstract

The Tableau Work Bench (TWB) provides a user-friendly framework for building au-
tomated tableau-based theorem provers. Its target audience includes researchers who
want to experiment with automated reasoners for calculi that they are designing. The
TWB allows them to do so even with limited programming experience.

An important consideration when designing a tableau calculus for a logic is the or-
der of rule applications. Incorrectly ordering rule applications can cause a calculus to
become unsound, incomplete or non-terminating. The TWB addresses this by imple-
menting a tactic language based on the language “Angel” described by [Martin et al.
1996], but the semantics of this language in the context of the TWB are not completely
specified and are not expressive enough in certain instances.

In this thesis, we restrict the notion of a tableau rule in order to provide well-
defined semantics for rule application and tactic evaluation. We also provide a sample
implementation of our rule and tactic system in O’Caml but leave its integration into
the TWB as further work. We also defer the proofs that the implementation meets
its specification and that the specified system is equivalent to a corresponding naive
tableau procedure.
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Chapter 1

Introduction

Logical formalisms have proven to be a useful tool for many automated reasoning
tasks. The satisfiability problem for classical propositional logic has been well-studied
and modern SAT solvers have been effectively used for a variety of problems includ-
ing dependency analysis in GNU/Linux distributions [Berre and Parrain 2008]. The
model checker SMV allows users to verify properties of their systems by turning the
specification into a statement in the temporal logic CTL [McMillan 2000]. CardKt
[Goré and Nguyen 2000] is a proof of concept that uses multi-modal logic to securely
verify the behaviour of programs running on Java Smart Cards.

Although classical propositional logic is useful for many tasks, we often want to
use something more expressive without moving to first-order logic where theorem-
hood is undecidable. Modal and temporal logics aim for a middle ground: increased
expressiveness without sacrificing decidability.

Modal logics extend the definition of formulae by adding new connectives called
modalities. The modal logic K adds [, meaning “it is necessary that ¢” and Q¢
meaning “is is possible that ¢”. Temporal logics define modal operators that can
reason about “future” and “past” states.

Classical (two-valued) logics are sometimes too strict to be useful: if a reasoning
agent discovers a contradiction, it can no longer be trusted to say anything useful be-
cause it is able to prove anything. Belnap, for example [Belnap 1976], proposes a four-
valued logic where atomic statements can take the values { True, False, Both, None}.

Tableau systems are syntactic calculi that can be used as the basis for an automated
decision procedure to test theoremhood of a statement in a given logic. The decision
procedure and its associated data structures can be made extremely compact: [Goré
and Nguyen 2000] implemented a decision procedure on a smart card with only 512
bytes of RAM and a 32KB EEPROM for storage.

If a logician devises a new logic and an associated calculus, it is difficult for them
to create an automated procedure without programming experience. Generic systems
such as the Tableau Work Bench [Abate 2007b] and LoTREC [Farias del Cerro et al.
2001] have arisen to fill this need. The TWB is syntax-driven and builds a prover
based on an encoding of the logician’s calculi. LoOTREC attempts to construct a model
based on an encoding of the logic’s semantics.

LoTREC has a formal semantics specified in [Gasquet et al. 2009], which means
that if the rules given to LOTREC are “correct” and LoTREC implements its specifica-
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2 Introduction

tion correctly, then the process will only produce “correct” results. The TWB has no
formally defined semantics. Our project aims to make the first steps in rectifying this
by providing a high-level description of a slightly restricted TWB.

1.1 Structure of the Thesis

Chapter 2 discusses related work and highlights the place of our work within this area.

Chapter 3 provides a brief introduction to modal logic and tableau methods, paying
particular attention to the concerns which automated tableau systems need to address.

Chapter 4 introduces the Tableau Work Bench as a tool for constructing automated
tableau systems. We show how the TWB addresses the concerns raised in Chapter 3
and describe some of its shortcomings.

Chapter 5 sets out our proposed semantics for a TWB-style generic tableau prover us-
ing a high-level pseudocode.

Chapter 6 uses the system described in Chapter 5 to define several provers for the
modal logics K and KT, and for a bi-modal version of K. We also benchmark our

provers against a standard set of benchmark data and discuss the results.

Chapter 7 presents our conclusions and sets out a scheme for further work in this area.



Chapter 2

Related Work

In this chapter, we explore related work in the area of generic automated proof sys-
tems that can handle (at least) modal propositional logics and that allow the user to
easily define new logics. This is a niche area and we are aware of only two such
generic systems: the Tableau Work Bench and LoTREC (Logical Tableaux Research
Engineering Companion).

Systems such as the Logic Work Bench [Heuerding et al. 1996] provide optimised
implementations of many common logics. Unlike the generic systems that are our
focus, the LWB is difficult if not impossible for non-technical users to extend to their
own logics. The LWB is written in C++ and is closed source. Without development
headers, it is extremely difficult (and certainly out of reach of the average logician) to
build a new logic module.

The most important feature of the LWB from our perspective is its standardised set
of benchmark formulae for the logics K, KT and S4. The benchmarks are described in
[Heuerding and Schwendimann 1996] and have been used in the past to benchmark
both the Tableau Work Bench [Abate 2007b] and LoTREC [Gasquet et al. 2009].

2.1 The Tableau Work Bench

The Tableau Work Bench was first presented in [Abate and Goré 2003] as a meta-
system for expressing tableau provers. The user defines tableau rules and specifies an
overall strategy to guide the proof search.

The TWB essentially searches through a space of rooted trees, where each node is
labelled with a set of logical formulae. The goal of the search is to produce a tree satis-
fying certain conditions, which we call a “closed tableau” (we will cover this notion in
more detail later). Applying a rule to a leaf turns it into an internal node, generating
new leaves based on the rule’s denominators. Additional complexity is introduced
because backtracking is sometimes required. If the result of a search is unsatisfactory,
parts of the tree may need to be discarded and rebuilt from a different rule application
or formula choice within a rule application. To manage the size of the search space,
the user specifies a strategy that restricts when rules are tried, using a tactic language.

The Tableau Work Bench has since been completely rewritten, bringing several
improvements:
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e The input format was made friendlier for the end user. The amount of O’Caml
code needed to implement simple logics is significantly reduced. Instead, “syn-
tactic sugar” that looks like a standard presentation of tableau rules is used,
improving accessibility for non-technical users.

e The custom language used to specify strategies was replaced with a clearer,
more expressive one, using [Martin et al. 1996] as a base.

e The internal, hard-coded list of possible connectives was removed. The user
now provides a grammar describing the formulae of their logic.

¢ An interface for defining sequent calculi was added.

The Angel language described in [Martin et al. 1996] is a generic language for ex-
pressing tactic programs. The only assumption Angel makes about rules is that they
transform an expression from one form to another. The language consists of prim-
itive tactics (Skip, Fail, and the rules themselves) and combinators for sequencing,
alternation, recursion and a “cut” operator to restrict backtracking.

An intermediate version of the TWB was used as the basis of [Abate 2007b], which
also identifies several important features of a meta-tableau system:

¢ A tactic language to manage non-determinism inherent in the specification of
tableau calculi. While some amount of non-determinism is unavoidable, unre-
stricted non-determinism makes the search space too large for automated de-
duction.

e Histories to record information passed down through the tableau. Without his-
tories, it is quite easy to find input that causes non-termination even for fairly
simple logics.

e “Upward variables”, that are the dual of histories: they collect information from
the leaves of the tableau and propagate it upwards as the search procedure back-
tracks.

The most recent version of the TWB is described in [Abate and Goré 2009]. This
system is extremely similar to the one described in [Abate 2007b]. The tactic calculus
has been altered again: the “cut” operator was removed and replaced by a new type
of alternation that implicitly restricts backtracking.

The basic goal of the TWB has remained unchanged throughout its various incar-
nations: it is designed to give users who are not strong programmers the ability to
construct automated provers for their logics.

The TWB does not have a formal specification for the behaviour of the tactic sys-
tem. The TWB descibed in [Abate 2007b] uses a language very similar to Angel but
relies on an intuitive understanding of “success” and “failure” of tactics. The newer
TWB detailed in [Abate and Goré 2009] elaborates on this slightly, but still relies on
the reader’s intuition to fill in blanks.
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2.2 LoTREC

The other major logic-agnostic system of which we are aware is LOTREC. We explore
it in some depth as it is important to show how its approach is different to that of the
TWB.

221 Theory

While the TWB uses tree-based tableau and takes a purely syntactic approach to proof
search, LOTREC uses the semantics of the logic being studied to define graph-based
tableau. These graph tableau are described in [Castilho et al. 1997]. Instead of tableau
rules that rewrite nodes in a proof tree, rules modify a rooted directed acyclic graph.
Each node in the graph is associated with a set of formulae that are considered to be
true at that node. The graph is started by creating a single node with the input formula
and rules are applied until either a contradiction is found or a fixed point is reached.

A rule in this style of modal tableau is either a structural rule that alters the graph
(by adding or removing nodes or edges), or a propagation rule that alters formulae
(e.g., by moving formulae between worlds).

In many modal logics, the formula Q¢ is read as “this node has a successor that
makes ¢ true”. A common structural rule for {¢ creates a new node in the graph
that is a direct successor of the current node (the node that made Q¢ true), and makes
@ true at this new node. This point bears repeating: unlike purely syntactic meth-
ods, this calculus of graph operations attempts to build a model of the input formula
directly.

Another commonly seen formula from modal logic is [lg, which is read “every
node that is a successor of this node makes ¢ true”. This inspires a basic propagation
rule: if a node makes Ug true, we pick out all of its immediate successors and require
@ to be true at those nodes.

The process of applying structural and propogation rules continues until either a
fixed point of all rules is reached, in which case the constructed graph is a model of
the input formula or a contradiction is detected in the graph, which means that the
input formula cannot be satisfied.

2.2.2 Practise

LoTREC is described in [Farias del Cerro et al. 2001] as a generic tableau prover for
logics that have a “possible worlds” semantics. The authors intend it to be particularly
useful for modal and description logics.

Beyond requiring that the logic has an graph-based semantics, LoTREC assumes
little about the user’s logic. The user is required to specify the syntax of the logical
connectives, which LoOTREC uses to construct a parser for input formulae.

A rule in LoTREC is a set of conditions associated with a set of actions. If every
condition is satisfied, then all of the associated actions are executed. LoTREC provides
abroad but fixed set of conditions and actions [Sahade 2004]. The provided conditions
cover tests such as: “is there a formula matching this pattern at this node?”, “is this
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node linked to this other node?” and the actions are what one would expect from a
program that manipulates graphs (“create a new node”, “link this node to this other
node”, “mark this expression with that flag”, ...).

The specification of rules in LoTREC is restricted to the constructs provided by the
authors but users can make use of “oracle programs” to handle tasks such as formula
rewriting or satisfiability checking.

LoTREC has a global idea of rule application: once it decides to apply a rule, it
will try to apply it to every node of a graph at once. This raises efficiency concerns in
large graphs where a large fraction of the nodes could be uninteresting for any given
rule.

LoTREC reduces the possibility of redundant work in two main ways. It requires
the user to specify a search strategy with the repeat, allRules and firstRule
combinators. repeat ... end executes the enclosed strategy until it is told to stop.
allRules ... endtriestoapply each contained strategy once. firstRule ... end
tries to apply each contained strategy in turn, stopping once a strategy succeeds.

LoTREC also uses an event dispatching system to track which rules may be appli-
cable and to temporarily “turn off” rules which will not achieve anything. [Gasquet
et al. 2009] provides a formal semantics for this event-based mechanism and proves
that it is equivalent to a naive rewriting scheme.

2.2.3 Comparing LOTREC with the TWB

Table 2.1 provides a side-by-side comparison of the main features of both systems. It
is interesting to note that the two systems are approaching the same problem from es-
sentially opposite directions. The TWB uses syntactic methods to find a contradiction
in the input, while LoOTREC uses semantically-inspired rules to build a model for the
input.

2.3 Our Contribution

We believe that the TWB'’s syntactic approach provides a more generally applicable
abstraction than LoTREC’s semantics-inspired approach, which is geared towards
modal and description logics in particular. We also believe that the O’Caml “hooks”
provided by the TWB will be more useful that LOTREC’s “oracle programs” Despite
this, modal logics have interesting characteristics that have motivated the features of
the TWB. We therefore examine the tableau systems of several modal logics to under-
stand the necessary features of a generic tableau system and study the TWB to find
weaknesses to address. We then present a high-level pseudocode description of proof
search, rule application and tactic evaluation and use this to describe provers for some
modal logics.

We discuss our implementation (as an O’Caml library) of the pseudocode descrip-
tion and how we have constructed multiple provers for the logics K and KT. We have
benchmarked these provers against the LWB’s benchmark suite, which is detailed in
[Heuerding and Schwendimann 1996].
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] Feature

|

LoTREC

[ TWB

Customisable connectives

Yes

Yes

Fundamental idea

Allow a encoding of rules
drawn from a logic’s se-
mantics.

Allow a natural encoding
of a tableau calculus.

Fundamental structure

Rooted directed acyclic
graphs of nodes with
formula sets.

Trees of nodes with for-
mula sets and attached
histories.

mula, or an identification
of a contradiction.

Search strategy Follow the user’s strat- | Depth first search - ex-
egy by applying rules to | plore nodes one at a time,
the graph until one of the | applying rules to leaves
rules signals to stop. according to the wuser’s

strategy, backtracking un-
til a satisfactory result is
reached.

Output A model of the input for- | A proof of closure, or trace

of rule applications that
shows that no closed re-
sult could be found.

Rule application

Global - applying a rule
means applying it every-
where on the graph at
once.

Local - applying a rule cre-
ates new nodes to explore
on that branch only.

guage for simple needs -
all of the semantic infor-
mation is captured by the
rules.

Rule extensibility Calls to external “oracle | Hooks to embed arbitrary
programs” O’Caml code as part of a
rule’s condition or effect.
Histories Basic support for “mark- | Histories are arbitrary
ing” a formula. O’Caml types (that meet
certain restrictions) and
can be manipulated by
any user-provided func-
tion.
Strategy language A simple strategy lan- | A more expressive and

complicated language to
allow control over back-
tracking and combination
of results from exploring
different sub-tactics.

Formal semantics

Yes

None

Table 2.1: Feature comparison between the TWB and LoTREC
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Chapter 3

Modal Logic and Tableau Methods

In this chapter, we present the syntax and semantics for two logics that motivate many
of the Tableau Work Bench’s features. We cover Classical Propositional Logic (CPL)
and the Modal Logics K and KT. For each logic, we present the syntactic structure
of its formulae and a semantics to assign meaning to the formulae. We then present
syntactic derivation procedures for each logic but omit proofs of soundness and com-
pleteness as they are not new results.

This chapter is based on material from [Russell and Norvig 2003] and [D’Agostino
et al. 1999].

3.1 Conventions

In this chapter, we use the following conventions:
e Atom stands for an infinite set of propositional atoms,
e Lowercase Roman letters p, g, 7, ... stand for individual propositional atoms,
e Lowercase Greek letters @, 1, ... stand for individual formula, and

e Uppercase Greek letters T', A, ... stand for (finite, possibly empty) sets of formu-
lae.

3.2 Tableau Systems

A tableau system provides a syntactic derivation procedure by deconstructing sets of
formulae.

Definition 3.2.1. Tableau Rule.

A tableau rule p consists of a numerator A and either finitely many denominators
D, ... Dy separated by single vertical bars, or the symbol x:

N NN

(D] 1D, (P)—%
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The numerator and each denominator are finite sets of formula shapes. Application of
arule (p) to a formula set I' involves computing a unifier 8 such that N'6 = I'. The de-
nominators of the rule are then instantiated using 6 to generate subgoals D;0...D,0.
(p") is the special case where there are no denominators: it terminates a branch if
a unifier exists. We use the symbol x to clearly indicate the termination of a branch.

Definition 3.2.2. Tableau Calculus.
A Tableau Calculus (or Tableau System) is a finite set of tableau rules {p1, ... pn}.

Definition 3.2.3. Tableau.
A tableau for a formula set I' is a rooted tree of nodes where:

e ['is the root node, and

e all children of a node are obtained from a parent by instantiating a tableau rule
from the same tableau calculus.

If every leaf of a tableau is the symbol X, the tableau is closed. If a tableau is not
closed, it is open.

Definition 3.2.4. Invertible rule.

A rule p in a tableau calculus T is invertible iff whenever there exists a closed 7-
tableau for an instance of the numerator of p, there exist closed T-tableaux for that
same instance of each denominator.

For clarity, we will write invertible rules with a double line separating the numer-
ator and denominator even before we have introduced the relevant inversion lemmas.

3.2.1 Automation

Tableau calculi can be used as a basis for automated deduction of logical formulae.
Using the input formula ¢ as the root node I' = {¢}, a depth-first search can attempt
to construct the rest of a closed tableau by instantiating and exploring the denomi-
nators of rule applications. Care must be taken to ensure that the implementation of
a tableau calculus does not sacrifice correctness or termination. These concerns are
logic-specific and are explored in Sections 3.4.4 and 3.5.3.

3.3 Classical Propositional Logic

We first present classical propositional logic, a two-valued logic with a fairly simple
tableau calculus.

3.3.1 Syntax of CPL
Definition 3.3.1. Syntax of CPL.
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CPL formulae are described by the following grammar (where p € Atom):

o == T

For convenience, we will often omit the parentheses and assume that the connectives
-, N\, V, —, < are listed in decreasing order of precedence.

3.3.2 Semantics of CPL

Definition 3.3.2. CPL Models and valuation of CPL formulae.
A CPL Model is a function o : Atom — {True, False}. We recursively define the
value of a CPL formula under a model as follows:

9(T) = True
9(L) = False
True if 9(¢@) = False
8(g) = @)
False otherwise
True if 8(¢@) = True and () = True
8o A1) = @) W)
False otherwise
True if 9 = True or 3(p) = True
8oV ) = @) W)
False otherwise
True ifd = False or 9(y) = True
8o — ) = @) W)
False otherwise
True ifd =9
False otherwise

We further extend the definition of 9 to cover sets of formulae:

S(r) = {True if () = True forevery y € T

False otherwise

Thus for finite sets I'= {y1,v2, ... ¥n}, HT) =31 Ava Aot Avn).
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Definition 3.3.3. Semantic entailment in CPL.
For a set of CPL-formulae I' and a single CPL-formula ¢, we say I' entails ¢ and
write I' E ¢ iff for all CPL-models 9, if (") = True then 9(¢) = True.

Definition 3.3.4. Satisfiability in CPL.
A CPL-formula ¢ is satisfiable iff there exists a CPL-model 9 such that 9(¢) =
True.

Definition 3.3.5. Validity in CPL.
A CPL-formula ¢ is CPL-valid iff for every CPL-model 9, 9(¢) = True.

Thus a CPL-formula ¢ is valid iff () E ¢. Further, a CPL-formula ¢ is valid iff its
negation ¢ is not CPL-satisfiable.

3.3.3 A Tableau System for CPL

Our procedure requires the input formulae to be in negation normal form, which we
define below.

Definition 3.3.6. Negation Normal Form of a CPL formula.

A CPL-formula ¢ is in negation normal form if it contains no — or « connectives
and every occurrence of — is adjacent to an atom. The negation normal form of a CPL
formula is computed as follows:

nnf(T) = T
nnf(-T) = L
nnf(l) = L
nnf(-L) = T
nnf(p) = p
nnf(-p) = -p
nnf(-=p) = nnf(e)
nnf(o Ap) = nnf(e) Annf(ip)
nnf(~(@ AYP)) = nnf(-@)Vnnf(-)
nnf(eVy) = nnf(e)Vnnf(ip)
nnf(—~(eVy)) = nnf(-@)Annf(-)
nnf(e — ) = nnf(-e Vi)
nnf(—(¢ =) = nnf(p) Annf(-)
nnf(e <) = nnf((¢ = P)A Y — @)
nnf(=(p <)) = nnf(~(¢ —¥))Vnnf(ip — ¢)

The following lemma shows that restriction to negation normal form does not limit
the expressive power of our tableau calculus:
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Lemma 3.3.7. Every CPL-formula ¢ has an equivalent nnf(¢) in negation normal
form such that ) F ¢ < nnf(e).

Definition 3.3.8. The Tableau Calculus CPL
Given the following tableau rules:

1;Z p;p 2 pAY,Z oV, Z
Id N)——nrsu= V)————
X (1) X ( ><p;1P;Z ( )@;ZIIIJ;Z

We define the tableau calculi CPL = {(L), (Id), (A), (V)}.
The root node of these tableau is a set of CPL-formulae where each formula is in
negation normal form.

(L)

The rules of a tableau calculus should preserve satisfiability downwards: if the
numerator of a rule is satisfiable, then at least one of the denominators is satisfiable.
The (V) rule says that for a disjunction ¢ V ¥ to be satisfiable, then at least one of
the disjuncts must be satisfiable. Applying a rule with the denominator x, such as the
(Id) rule, shows that the numerator is unsatisfiable. A closed tableau should therefore
be equivalent to showing that the root is not satisfiable. This idea is formalised by the
notions of soundness and completeness.

Lemma 3.3.9. All of the rules in CPPL are invertible.
We omit the proof as it is not a new result.

Definition 3.3.10. Soundness of CPL-tableau.
A tableau calculus for CPL is sound iff:
If there is a closed tableau for {¢} then ¢ is not satisfiable.

Definition 3.3.11. Completeness of CPL tableau.
A tableau calculus for CPL is complete iff:
If ¢ is not satisfiable then there is a closed tableau for {¢}.

CPL is sound and complete, but we omit the proofs for the sake of brevity.

Example 3.3.12. Example closed CPL-tableau.

We show that that formula p A (g A (—p V —q)) is unsatisfiable by constructing a
closed CPL-tableau:

pA@A(=pV—q))
p;q A (=pV—q) ( ()A)

PPV g
_ 1 (V)
PP AR
P (1) " (1a)

Example 3.3.13. The (V) rule is invertible: whenever {¢ V ¢} U Z has a closed tableau,
{9} UZ and {¢} U Z have closed tableau. Intuitively, we are not losing any informa-
tion moving from the numerator to the denominator.
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An important feature of invertible rules is the order in which they are applied does
not matter. Given a formula set {—q A =p, p V q}, it does not matter if we apply the
(A) rule or the (V) rule first: there are closed tableaux for either case. When applying
an invertible rule to a formula set, we are therefore able to commit to a unifier without
worrying about losing completeness.

3.3.4 Computing Validity and Entailment

Tableau procedures give us a method to test if a formula is unsatisfiable. We can
use this to test if a formula is valid by testing if its negation is unsatisfiable. We can
syntactically test for semantic entailment {y1,v¥2,...¥n} F @ by testing if 1 A y2 A
... A ¥Yn N\ - has a closed tableau.

3.3.5 Considerations for Automation

There are three types of decisions that the search procedure needs to make as it applies
rules. First, it needs to decide which rule to apply to a formula set. Second, it needs to
decide on a unifier to use to instantiate the denominators of a node. Third, it needs to
decide which denominator to explore.

Automating CPPL is fairly straightforward as all the rules are invertible. We cannot
get to a “dead end” state where no rules are applicable and yet we have missed out on
finding a closed tableau. However, an automated procedure needs to avoid redundant
work as well as be correct. It therefore makes the most sense to try to apply the (L)
and (Id) rules first, then the (A) rule and branch using the (V) rule as a last resort.
The order of rule applications becomes important for correctness once non-invertible
rules are introduced, such as the (K) rule in Section 3.4.3.

The other concern with automated systems is ensuring that the procedure will
terminate for any input formula set I'. In CPPL, each application of the (A) or (V) rules
removes one connective from ', whilc (L) and (Id) instantly terminate. Because we
require I" to be finite, there cannot be an infinite number of connectives. Eventually
there will come a point where it is impossible to apply the (A) or (V) rules. The
resulting tableau is then open or can be closed by applying the (L) or (Id) rules.

3.4 Propositional Modal Logic
We now present a logic called K, which can reason about “worlds” that are connected

in some way. The value of atoms can change from world to world and we introduce
connectives for reasoning about formulae in other worlds.

3.4.1 Syntaxof K

Definition 3.4.1. Syntax of K.
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K formulae are described by the following grammar (where p € Atom):

o == T

As before, we will often omit the parentheses. —,[] and ¢ have equal highest prece-
dence, followed by A, V, — and «.

3.4.2 Semantics of K

Definition 3.4.2. Kripke Frame.

A Kripke Frame is a directed graph (W, R), where W is a non-empty set of worlds
and R C W x W is a binary relation over W. We write wi Rw; to mean (w1, w;) € R.

Definition 3.4.3. Valuation on a Kripke Frame.

A valuation on a Kripke frame is a function ® : W x Atom — {True, False} that
describes the truth value of every atom at every world.

Definition 3.4.4. Kripke Model.

A Kripke Model is a triple (W, R, 9) where (W, R) is a Kripke frame and 9 is a
valuation on W.

Definition 3.4.5. Valuation of formulae.
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We recursively extend the definition of J to valuations of formulae:

Hw, T) = True
d(w, L) = False

s = |
oo =\
AT
oo = {110
L

oo {1

s 00) = ¢

if 3(w, ) = False

otherwise

if (w, ¢) = True and d(w, ) = True
otherwise

if 3w, @) = True or Hw, ) = True

otherwise

if 3w, ¢) = False or &(w, ) = True

otherwise
if w, p) = Hw, P)
otherwise

if 9(v, @) = True for every v € W with wRv

otherwise

if (v, ¢) = True for some v € W and wRv

otherwise

Definition 3.4.6. Semantic forcing on worlds and models.
Let M = (W, R, 9). For aworld w € W and a K-formula ¢, we say w forces ¢ and
write w Ik @ iff (w, ¢) = True. We say that the model M forces ¢ and write M |- ¢

iff foreveryw € W, w I ¢.

If I" is a set of K-formula, we write M |- T iff for every y € ', M IF- .

Definition 3.4.7. Semantic entailment in K.
Let KC be the class of all Kripke frames, I" be a set of K-formulae and ¢ a K-formula.
We say I" entails ¢ and write I' E ¢ iff for every model M € K, M I T implies M I ¢.

Definition 3.4.8. Satisfiability in K.
A K-formula ¢ is K-satisfiable iff there exists a Kripke model M = (W, R, 9) and

aworld w € W such that w I ¢.

Definition 3.4.9. Validity in K.

A K-formula ¢ is K-valid iff for every Kripke model M = (W, R, 9), M IF ¢.

Thus a K-formula ¢ is K-valid iff ) F ¢. Further, a K-formula ¢ is K-valid iff its

negation —¢ is not K-satisfiable.
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3.4.3 A Tableau System for K

As with the tableau system for CPL, our tableau system for K require the input for-
mulae to be in negation normal form.

Definition 3.4.10. Negation Normal Form of a K formula.

A K-formula ¢ is in negation normal form if it contains no — or < connectives
and every occurrence of — is adjacent to an atom. The negation normal form of a K
formula is computed as follows:

nnf(T) = T
nnf(-T) = L
nnf(Ll) = L
nnf(-L) = T
nnf(p) = p
nnf(-p) = -p
nnf(==p) = nnf(p)
nnf(e ANY) = nnf(e) Annf(ip)
nnf(=(@Ap)) = nnf(-@)Vnnf(—-y)
nnf(eVy) = nnf(e)Vnnf(p)
nnf(=(eVy)) = nnf(=e)Annf(-1p)
nnf(e — ) = nnf(-e Vi)
nnf(=(¢ — ¥)) = nnf(e) Annf(—y)
nnf(e < ) = nnf((e = P)A (Y — @)
nnf(—(p < P)) = nnf(=(¢ — ¥))Vanf(p — ¢)
nnf(Op) = O(nnf(e))
nnf(-Og) = O(nnf(—e))
nnf(Qe) = O(nnf(p))
nnf(—0p) = DO(nnf(-g))

As with CPL, the following lemma shows that restricting the tableau calculus to
formulae in negation normal form does not sacrifice expressive power:

Lemma 3.4.11. Every K-formula ¢ has an equivalent formula nn f(¢) in negation nor-
mal form such that ) F ¢ < nnf(e).

Definition 3.4.12. The Tableau Calculus K.
Given the following tableau rules:

1;Z ;P L
()l _F (A)

(L) X X ;P Z
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Op;0X;Z
B=ox—

We define the tableau calculus K = CPL U {(K)}. As with our tableau calculi for CPL,
we require the root node to be in negation normal form.

Definition 3.4.13. Soundness of K-tableau.
A tableau calculus for K is sound iff:
If there is a closed tableau for {¢} then g is not satisfiable.

Definition 3.4.14. Completeness of K-tableau.
A tableau calculus for K is complete iff :
If @ is not satisfiable there exists a closed tableau for {¢}.

K is also sound and complete, but we again omit the proofs for brevity.

Example 3.4.15. The (K) rule is not invertible: the formulae in the set Z are lost when
moving to the denominator. The set {Qp, L} has a closed tableau:

Op; L
P ()

But applying the (K) rule instead of the (L) rule results in a new set which does
not have a closed tableau:
Op; L

= (K)

No rule is applicable to the denominator {p}. This tableau is open and yet our initial
formula set was unsatisfiable.

3.4.4 Considerations for Automation

There are two issues to consider when automating the derivation procedure for K.
Both issues are cause by the non-invertibility of the (K) rule.

First, whenever a search procedure applies the K rule, it cannot know in advance
which ¢-formula, if any, will close. Consider the set {Qp, 0L}. If (K) is applied to
Op, the result is an open tableau, but if (K) is applied to ¢ L, the tableau will close
after applying (). A backtracking mechanism is required at each application of the
(K) rule to test every ¢-formula and to close if any of the choices generate a closed
tableau. More generally, an invertible rule such as (A) or (V) allows us to commit to
the formula choice, while a non-invertible rule like (K) requires us to backtrack across
formula choices to find a closed tableau.

As we have seen in Example 3.4.15, the (K) rule loses information by discarding
the set Z from the numerator. We need to apply the (A) and (V) rules as much as
possible before applying (K) for two reasons:

e To detect any closed tableau that do not involve [J- or ¢-formulae, before these
formulae are discarded by the (K) rule, and
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e To ensure that all O-formulae in the formula set are “detected” by the (K) rule.

Therefore, a decision procedure must first “saturate” the formula set by applying
the (A) and (V) rules as many times as possible and only then apply the (K) rule.
The result is that by the time we apply the (K) rule, the set Z can only contain atoms,
negated atoms, T or L.

Termination of the K procedure is ensured by a similar argument to the argument
used for CIPL. First, we need to define the modal depth of a formula:

Definition 3.4.16. Modal depth of a formula.
The modal depth of a formula is defined by the following equalities:

modaldepth(L) = 0

modaldepth(T) = 0

modaldepth(p) = 0
modaldepth(—¢) = modaldepth(¢p)

1+ modaldepth(ep)
(¢)

1 4 modaldepth(¢p

)
)
)
)
modaldepth(Ce)
modaldepth(Oe)
)
)
)
)

modaldepth(o N¢P) = max{modaldepth(¢), modaldepth()}
modaldepth(¢ V) = max{modaldepth(¢), modaldepth(i)}
modaldepth(¢ — V) = max{modaldepth(), modaldepth(1)}
modaldepth(¢ < V) = max{modaldepth(), modaldepth(1)}

Because we operate on finite sets I and formulae cannot have infinite modal depth,
we know that arg max,cr modaldepth(y) is finite. Each “saturation step” is essentially
tableau search using CPL, which we know will terminate. When the (K) rule is ap-
plied, each formulae is either removed or has its modal depth reduced by one. We
therefore cannot apply the (K) rule an infinite number of times. Becase we cannot
generate infinitely many rule applications, our procedure must terminate.

3.5 Beyond K

We now present two straightforward extensions to K which have interesting implica-
tions for their automated deduction procedures.

3.5.1 Bi-modal K

A bimodal version of K adds an additional relation to the Kripke frames (W, R, R').
We add new connectives ¢ and B to our definition of well-formed formulae. The for-
mulae 4@ and B¢ have identical semantics to O and g except that they operate on
R’ instead of R. Our calculus K can be extended to bimodal K by creating analogous
versions of the (K) rule to deconstruct Bl and 4 formulae.
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3.5.2 KT

We can also extend K by placing additional constraints upon the reachability relation
used in the Kripke frames. Requiring the relation to be reflexive yields the logic KT.
In KT, every node is its own successor and so the axiom schema Ul — ¢ is valid for
every formula ¢. This inspires the rule (T):

Up; Z

T —r—exrs
( )DQD;(P;Z

Lemma 3.5.1. The rule (T) is invertible.
As with the other invertibility results, the proof is omitted as it is not novel.

Adding this rule to K yields the calculus KT = KU {(T)}. KT is sound and
complete but we omit the proof as it is not a new result.

3.5.3 Considerations for Automation

Automating bimodal K is fairly straightforward. The issues are mostly the same as
for automating K except that we now have two noninvertable rules: (K{) and (K#).
Automating KT presents some additional complications that are described shortly.

3.5.3.1 Bi-modal K

As with our automated system for KK, we first need to saturate the formula set by ap-
plying (A) and (V) as much as possible. After that, we need to choose to apply either
(KQ) or (K4#). Consider the formula set {Qp, Og, 47, 4L }. Because our procedure can-
not know in advance which (- or #-formula will close, we must be able to apply the
(KQ) rule on both ¢p and (g and also be able to apply the (K4) rule on ¢r and ¢.L.
If we apply (K¢), we can generate a closed tableau, but if we apply (K{) we cannot.
We must therefore be able to backtrack at the rule-choice level of our search procedure
when faced with a choice between non-invertible rules. If one of these rules fails to
generate a closed tableau after trying all possible formula choices, we must backtrack
to this choice point and continue the search by applying another rule and trying all its
formula choices.

Termination for bi-modal K can be shown by a similar argument to the reasoning
for standard K.

3.5.3.2 KT

For KT, the situation is a little more complicated. Consider the formula set {{Jp}. We
can apply the (T) rule to get the denominator {p,p}. A naive algorithm could run
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forever by repeatedly applying the (T) rule to no effect:

Up
5 7
p;Up

(T)

This is the simplest possible case; the infinite chain of applications cannot be detected
with a lookbehind of fixed size. A terminating implementation must maintain a his-
tory of forumulae H that have had the (T) rule applied to them, and not apply (T) to
the same formula twice. Our revised (T) rule is as follows:

(1) Ue; Z
‘o;0@; Z — H: HU{Ogp}

Oe € H

To the right of the rule we have its side condition: a condition which must be satisfied
before the rule can be applied. In the denominator, we specify an action to the right of
the —. If we do not specify an action, we assume that the history is copied unchanged.
The action is local: it only updates the history on its subtree. The action and side con-
dition together prevent the above infinite loop by preventing the application of (T)
to the same formula multiple times. This history must be cleared after each applica-
tion of the (K) rule, because the old [J-formulae have now been “reduced” and new
O-formulae (from inside ¢¢) may exist and need “unpacking”. Our updated (K) rule
is presented below: o
\ o;0X;Z
(K) ;X — H:0

Once we prevent infinite applications of (T), we can show termination with a straight-
forward argument using the maximum modal depth of the input formula set. We will
explore side conditions and actions in detail in later chapters.
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Chapter 4

The Tableau Work Bench

4.1 Background

The tableau work bench is a generic framework for building tableau-based theorem
provers. Developed in 2007 as part of a PhD project, the TWB is designed to help
“lazy logicians” produce naive provers for their favourite logics without being “real
programmers”.

The TWB consists of two major parts: a front-end compiler that desugars the input
file into O’Caml code and a back-end that implements the generic depth-first tableau
search procedure and supporting data structures.

4.2 Non-Determinism

[Abate and Goré 2009] identifies and addresses three types of non-determinism in the
search procedure:

Node-choice: determining which formula set to expand next in the search,
Rule-choice: deciding which rule to apply to a formula set, and
Formula-choice: deciding how to instantiate the schemas in a rule’s numerator.

Node choice is handled by a depth-first search: when a rule is applied, the leftmost
denominator instance is searched first. Rule choice is left to the user through the
specification of a strategy. Formula choice is only important if the rule being applied
is not invertible. For non-invertible rules, the TWB backtracks over rule instances until
one instance closes or all instances have been generated and found to be open.

4.3 Source Format

The input to the TWB compiler is an O’Caml source file which is parsed by an ex-
tended version of the O’Caml parser !. This extended syntax is designed to resemble
the traditional presentation of tableau rules. The desugared input file (now O’Caml

10’Caml comes with a tool for extending the syntax of the language called camlp4.
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code) is then compiled by the O’Caml compiler and linked against the back-end li-
brary. Figure 4.1 defines a prover for the modal logic K. The user defines a gram-
mar describing the formulae of the logic (using the GRAMMAR keyword), a number of
tableau rules to operate on sets of such formulae (using the RULE keyword) and a
strategy to guide the rule application, using the STRATEGY keyword.

The definition of the “K” rule parallels the definition in Section 3.4.3 but the def-
initions of the “Id”, “False”, “And” and “Or” rules have been compressed to fit on
a single line. An invertible rule is denoted by separating a rule’s numerator and de-
nominator with a line made of at least two “=" symbols. A non-invertible rule uses a
line of at least two “~" symbols.

As we have seen before, invertibility corresponds to commiting to a formula choice.
The user is assumed to have proved an invertibility lemma for any rules that have
been declared invertible.

The TWB allows a second type of alternation in rule denominators. The single |
symbol is used to denote that the numerator is closed if every denominator is closed.
The || is the dual of |: the numerator closes if some denominator closes. This is used
to implement the recursive version of the (K) rule given in Figure 4.2, which moves
the alternation from the formula choice into the rule’s denominator. Notice that we
use the === line instead of the ——- line from the original version of K. Because the
KREC rule does not discard the other <>-formulae, we can declare it to be “invertible”
as our strategy ensures that every <>-formula will be examined by an application of
KREC. For example, applying KREC to the set {Op; 0L} will find a closed tableau by
first trying Op (say) and then recursing on to the set {{_L } when it fails to close. The
next application of KREC will generate the formula L, causing a closed result.

To implement logics such as KT from Section 3.5, we need histories and the ability
to attach conditions to rules. Figure 4.3 demonstrates how the TWB presents side-
conditions and actions to the user. We define a module FormulaSet that uses the
TWB’s builtin generic set functor?. Within the HISTORIES declaration we declare
one history called BOXES that is a new, empty FormulaSet . set. The COND directive
on the T rule means that it will only apply if the formula that matches 2 is not already
in BOXES. When the rule applies, the ACTION directive causes whatever matched A to
be added to BOXES on that branch.

The STRATEGY directive describes the strategy to guide rule applications. The
strategy syntax is derived from the tactic calculus presented in [Martin et al. 1996]. In
[Abate and Goré 2009], the following kinds of tactics are described:

e Tableau rules.

e Skip and Fail. Skip does nothing, successfully, behaving like a rule that is always
applicable and copies the numerator unchanged into the denominator. Fail be-
haves like a rule that is never applicable.

e Deterministic alternation, written t1!f,. Deterministic alternation commits to

2A functor is O’Caml’s method of enabling generic programming. They serve a similar role to the
templated container classes in the C++ STL, or Java’s generic collections.
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t if the first rule of t; is applicable. If ¢; is selected, the procedure will not
backtrack to try f,.

e Alternation, written #1||f. If the tactic #; is successful, then the alternation be-
haves like t. If not, then the search backtracks and applies t.

e Sequencing, written tq;t;. Applying t1;t; to a node N is meant to be equivalent
to tz(tl(N)).

e Repetition, written t*. t* is defined to be uX.(t; X|Skip). u is a least fixed point
operator: the X inside the expression is equivalent to the entire expression.

4.4 Shortcomings

The version of the TWB described in [Abate and Goré 2009] has multiple shortcomings
as a specification, mainly regarding rule application and the evaluation of tactics:

e A closed tableau is identified with success and an open tableau with failure but
a rule is specified to “succeed” if it is applicable. For rules that do not close their
branch of the tableau, this is obviously incorrect.

e Rule application is never properly defined. Presumably when a sequence t1; t,
is applied to a node, t; will generate some subtree of the tableau and t, should
be applied to each of the leaves. It is not clear how backtracking should behave
if t, fails. Ideally the search should backtrack into any alternation in ¢; and try a
different alternative, but this is not specified at all.

e Tactic alternation is defined as a || operator, but the expansion of * and the sam-
ple code both use | for tactic alternation, which is never defined.

e Operator meanings are inconsistent. | in the context of a denominator requires
every denominator to be closed for the numerator to be closed. | in the context
of a tactic requires one of the tactics to be closed for the application of the tactic
to close.

e The alternations offered by different areas of the search are inconsistent. Within
a denominator, the procedure can try alternatives until one alternative is open
or until one is closed. Within a tactic, the procedure can try alternatives until
one is closed or commit to the first choice. When choosing a formula partition,
the options are the same as for a tactic.
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CONNECTIVES [ "7 ";"g";"v",;"->","<->",; "> n]n ]
GRAMMAR
formula :=
ATOM | Verum | Falsum
| formula & formula
| formula v formula
| formula —-> formula
| formula <-> formula
| [] formula
| <> formula
| formula
7
expr := formula ;;
END

open Twblib

open Klib
TABLEAU
RULE K
{<>A 1} ; []1 X; 2
A ; X
END
RULE Id { a } ; { = a } === Close END
RULE False Falsum === Close END
RULE And { A & B } === A ; B END
RULE Or { A v B } === A | B END
END
STRATEGY :=
let sat = tactic ( (Id ! False ! And ! Or) ) in
tactic ( ((sat)* ; K )=* )
PP := List.map nnf
NEG := List.map neg
MAIN

Figure 4.1: TWB definition of a prover for the modal logic K [Abate 2007a].
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RULE KREC
{ <>A } ; [] X ; <>Y,; Z

Figure 4.2: A recursive definition of the (K) rule for the logic K [Abate 2007a].

module FormulaSet = TwbSet.Make (

struct
type t = formula
let to_string = formula_printer
let copy s = s
end
)
HISTORIES
BOXES : FormulaSet.set := new FormulaSet.set
END
RULE T
{ [1 A}
A [1 A
COND notin (A, BOXES)
ACTION [ BOXES := add(A,BOXES) ]
END

Figure 4.3: TWB definition of the (T) rule for the logic KT [Abate 2007a].
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Chapter 5

Proposed Semantics for the TWB

In this chapter, we present a new generic tableau search procedure. We aim to present
our procedure in a way that suggests a straightforward implementation. We make
no specific assumptions about the logic, formula structures or history structures used.
Modern programming languages often have a “generic programming” facility that
can be used to achieve this, such as C++’s templates [Stroustrup 1991], Java’s generics
[Gosling et al. 2005] or O’Caml’s functors [Leroy et al. 2008].

At certain points in this chapter, we find an algorithmic specification more natural
than a purely declarative approach. We use a pseudocode that should be familiar to
most readers who have a programming background.

Our procedure is inspired by and broadly similar to the ill-specified search from
Chapter 4: We assume a set of rules and a tactic to guide their application.

5.1 Assumptions and Conventions

We assume the following features are specified by the user’s logic:
o Formulae is a set of all well-formed formulae of the user’s logic.
e Schemas is a set containing all valid schemas of the user’s logic.
e Varis a set of variables that appear in schemas.
e Histories is a set of all possible history values.

e partitions(schema,T) is a procedure that computes all partitions of a formula
set I' that match schema. A partition is a function 7 : Var — P(Formulae).
Partitions is the set of all possible partitions.

e instantiate(schema, partition) is a procedure that instantiates schema with values
from partition. In particular, for any partition 7 returned by partitions(schema,T),
instantiate(schema, 7r) =T.

We use the following notational conventions in this chapter:

e P(X) stands for the power set of a set X.
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e Forsets X and Y, X + Y stands for the discriminated union ({X} x X) U ({Y} x
Y). We abuse notation by writinga € X+ Y tomean (X,a) € X+ Yor (Y,a) €
X + Y when the originating set is obvious.

5.2 Basic Definitions

Definition 5.2.1. Result of the search procedure.

The result of the search procedure is one of the symbolic constants Open, Closed or
Failure. Open and Closed have their usual meanings in the context of tableau systems.
Failure is a third result used to indicate that the search was unable to proceed. For
example, a tactic that forces the application of an inapplicable rule will cause a result
of Failure.

We will also refer to the opposite of a result in our procedures: the opposite of
Open is Closed and the opposite of Closed is Open. Failure has no opposite. Notionally,
the opposite of Failure is “success”: either Open or Closed, but we do not use this in
our procedures.

For convenience, we also define the set Results = {Open, Closed, Failure}.

Definition 5.2.2. Alternations.

The version of the TWB described in Chapter 4 uses three abstract types of alter-
nation. These alternations appear at different levels of the procedure: the formula
choice, rule choice or denominator choice level. In the context of our Results, they are:

One-success alternation: Commit to the first choice (formula choice, rule choice, de-
nominator choice) that does not return Failure and use its result without consid-
ering other alternatives. If all alternatives return Failure, return Failure.

One-open alternation: If any choice returns Open, return Open. If all choices return
Failure, return Failure. Otherwise, return Closed.

One-closed alternation: If any choice returns Closed, return Closed. If every alterna-
tive returns Failure, return Failure. Otherwise, return Open.

We represent these choices with the symbolic constants OneSuccess, OneOpen and
OneClosed. We define the set Alternatives = {OneSucces, OneOpen, OneClosed}.

Definition 5.2.3. Rules.
A Ruleis a 6-tuple: (Numerator, Denominators, SideCondition, Action, FormulaChoiceAlt,
Denominator Alt). Each component of the tuple is as follows:

e Numerator € P(Schemas)
e Denominators € P(P(Schemas)) + Results
e SideCondition € Partitions x Histories — {True, False}

e Action : Partitions x Histories — Histories
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o FormulaChoice Alt € Alternatives
o DenominatorAlt € Alternatives

We also use the name of each entry in the tuple to define projection functions. For
instance, Numerator(r) is a function that extracts the numerator from a rule r. The
others are similar.

Definition 5.2.4. Tactics.

We use the basic tactic structure defined in [Martin et al. 1996], but extend the
definition to accommodate our additional types of alternation. A tactic is defined by
the following grammar:

tactic == Skip
Fail
Rule(r)

tactic; tactic

tactic|tactic

|

\

|

| tactic!tactic
|

| tactic||tactic
|

uX.T(X)

Where 7 is a rule, X is a variable and T(X) is a tactic in which X may appear as if
it were a tactic. We will use ; to sequence tactics, ! for one-success alternation, | for
one-open alternation and || for one-closed alternation. uX.T(X) represents the least
fixpoint of a tactic: each occurence of X within T will be equivalent to uX.T(X).

Definition 5.2.5. Tactic Expansion.

We define a function expand which re-writes tactics to ensure that the top level of
a tactic is either a primitive (Skip, Fail or Rule(r)), a sequence of the form Rule(r); t or
an alternation t1!t,, t1|t; or t1]|t2.
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expand(Skip) = Skip
expand(Fail) = Fail
expand(Rule(r)) = Rule(r)
= expand(ty)
= Fail

)
expand (Skip; t1)
1) = Rule(r);h
)
)

expand(Fail; t;
expand(Rule(r); t
expand((ti;t2);t3) = expand(ty; (t2;t3))
expand((t1!t2); ts

t1;t3)|expand(ty; t3)

(
= expand(ty; t3)lexpand(ty; t3)

t

expand((t1||t2); ts t3
expand((uX.T(X)); t1

expand(ti!t;

(
(
= expand(ty; t3)||expand(ty; t3)
= expand(expand(uX.T(X)); t1)
= tlb
= hlk
expand(ti||t2) = tl|t
expand(uX.T(X)) = expand(T[X := uX.T(X)])

)
);t3)
((t't2); t3)
expand((t1|t2);t3) = expand
(t1][t2); £3)
)it
)
expand(t |ty

)

Associativity of ; and distribution of ; over alternation (on the right only) are de-
fined as laws in [Martin et al. 1996]. The alternation of Angel is completely nondeter-
ministic. Our alternation operators are essentially specialisations of Angel’s generic
alternation that handle the trichotomy of results in our system.

5.3 The Search Procedure

5.3.1 Overview

Recall from Section 3.3.5 that there are three types of decisions that the search proce-
dure needs to make as it applies rules:

e Which rule to apply to a set of formulae,
e Which partition of the numerator is used to instantiate denominators, and
e Which denominator to explore next.

These decisions are contained within a set of three mutually-recursive procedures
eval TWB, applyRule and eval Denominators. eval TWB selects the rule to apply from
a given tactic. applyRule partitions formulae, checks side conditions and instanti-
ates denominators. eval Denominators evaluates a set of denominators and collects an
overall result.
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5.3.2 Evaluating a Formula Set

The procedure eval TWB(T, history, tactic) takes a formula set T', the current history
state and a tactic to evaluate. eval TWB(T, history, tactic) = eval TWB' (T, history, expand (tactic)),
where eval TWB' is defined as follows:

eval TWB'

eval TWB’

eval TWB'

eval TWB’

eval TWB' (T, history, t!ty) = let res = eval TWB(T, history, t1);
if res == Failure then eval TWB(T, history, t;) else res

eval TWB' (T, history, t1|t2) = let res; = eval TWB(T, history, t1);

case resq of {

I', history, Skip) = Open
I', history, Fail) = Failure
I', history, Rule(r)) = applyRule(r,T, history, Skip)

—_~ o~ o~ o~

I', history, Rule(r); t) = applyRule(r, T, history, t)

Open — Open
Closed — let resy = eval TWB(T, history, t;);
if res, == Failure then Closed else res,

Failure — eval TWB(T', history, t;)
}
eval TWB' (T, history, t1]|t2) = let resy = eval TWB(T, history, t1);
case resp of {
Open — let resy = eval TWB(T', history, t,);
if resy == Failure then Open else res;
Closed — Closed
Failure — eval TWB(T, history, t;)

5.3.3 Rule Application

applyRule(rule, T, history, tactic) is a procedure that applies a rule to a formula set I
and a given history, then evaluates tactic across the denominator formulae:
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applyRule(rule, T, history, tactic) =
case Denominators(rule) of {
Open|Closed|Failure —
foreach partition in partitions(Numerator(rule),T) {
if SideCondition(rule)(partition, history) == True
then return Denominators(rule)
}
case FormulaChoice Alt(rule) of {
OneOpen — applyRuleSelect(Open, rule, T', history, tactic)
OmneClosed — applyRuleSelect(Closed, rule, T, history, tactic)
OneSuccess — applyRuleSuccess(rule, T, history, tactic)

Where applyRuleSelect and applyRuleSuccess are defined as follows:

applyRuleSelect(value, rule, T, history, tactic) =
let res = Failure;
foreach partition in partitions(Numerator(rule),T) {
if SideCondition(rule)(partition, history) == True then {
let r = eval Denominators(rule, partition, history, tactic);
if r = value then return value

else if r == opposite(value) then res = r

}

return res
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applyRuleSuccess(rule, T, history, tactic) =
foreach partition in partitions(Numerator(rule),T) {
if SideCondition(rule)(partition, history) == True then {
let r = eval Denominators(rule, partition, history, tactic);

if r # Failure then return r

}

return Failure

5.3.4 Evaluating Denominators

eval Denominators(rule, partition, history, tactic) is a procedure that instantiates the de-
nominators of rule according to partition and evaluates them using history and tactic:

eval Denominators(rule, partition, history, tactic) =
case Denominator Alt(rule) of {
OneOpen — eval DenominatorsSelect(Open, rule, partition, history, tactic)
OmneClosed — evalDenominatorsSelect(Closed, rule, partition, history, tactic)

OmneSuccess — eval DenominatorsSuccess(rule, partition, history, tactic)

eval DenominatorsSelect(value, rule, partition, history, tactic) =
let res = Failure;
foreach denominator in Denominators(rule) {
let instance = instantiate(denominator, partition);
let r = eval TWB(instance, Action(rule)(partition, history), tactic);
if r == value then return value
else if r == opposite(value) then res = r

}

return res



36

Proposed Semantics for the TWB

eval DenominatorsSuccess(rule, partition, history, tactic) =
foreach denominator in Denominators(rule) {
let instance = instantiate(denominator, partition);
let r = eval TWB(instance, Action(rule)(partition, history), tactic);
if r # Failure then return r

}

return Failure



Chapter 6

Examples and Results

In this chapter, we demonstrate the expressiveness of our semantics by defining four
provers for the modal logic K and one for bi-modal K. We also provide a prover for
the logic KT, to demonstrate the use of side conditions and actions.

6.1 K

6.1.1 Conventions

We let Formulae be the set of K-formulae described in section 3.4.1. We also let Schemas
be the set of schemas that describe K-formulae. Tableau calculi for K need no history,
so we use {0} (the set containing only the empty set) as the set of all possible K-
histories. We define a function noaction : Partitions x {0} — {0} by:

noaction (partition, ) = ()

Because K does not use side-conditions, we define a function always : Partitions X
{0} — {True, False} by the following equation: always(partition, ) = True.
Definitions of partition and instantiate for K are fairly straightforward.

6.1.2 Rules

To be able to use tableau rules, we need to convert them to a 6-tuple encoding. Re-
call from Section 5.2 that a rule is a 6-tuple (Numerator, Denominators, SideCondition,
Action, FormulaChoiceAlt, Denominator Alt). We walk through the natural encoding
of the (Id), (V) and (K) rules to illustrate the principles used in the encoding:

pipil (v)iwvw;z Op;0X; 2

U= ez Tex

Figure 6.1: The (Id), (V) and (K) rules.
Invertible rules use OneSuccess for formula choice alternation and rules that close
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the tableau have a denominator of (Results, Closed) and ignore the denominator al-
ternation. The (Id) rule therefore has the following encoding:

(Id) = (p; —p; Z, (Results, Closed), always, noaction, OneSuccess, OneSuccess)

Rules that require all denominators to close use OneOpen for denominator alter-
nation:

(V) = (pV; Z,(Schemas, {{@; Z},{W; Z}}), always, noaction, OneSuccess, OneOpen)

The (K) rule can close the tableau if one of the formula choices close, so OneClosed
is used for formula choice alternation:

(K) = (O@;0X; Z, (Schemas, {{¢; X} }), always, noaction, OneClosed, OneSuccess)
The remaining rules of our tableau calculus for K have a straightforward encoding;:

(L) = (L;Z, (Results, Closed), always, noaction, OneSuccess, OneSuccess)
(N) = (p ANP; Z, (Schemas, {{@; P; Z}}), always, noaction, OneSuccess, OneSuccess)

Our first prover for K is straightforward. We apply the (L), (Id), (A) and (V) rules
as much as possible. If this does not give us a closed tableau, we attempt to apply the
(K) rule and continue:

K; = uX.((Rule(L)!(Rule(Id)!(Rule(N)!(Rule(V)!Rule(K))))); X)!Skip
For readability, we make the following abuses of notation:
e We use the name of a rule (p) to stand for Rule(p).
e We omit the parentheses around a rule.
e We assume that all alternations are right-associative.

This gives us the following simplified version of K;:
Ky = puX.((LIdIAVIK); X)!Skip

The choice of alternation operators is important. For alternations across invertible
rules the logical result is not changed but the amount of backtracking can vary greatly.
As we have seen in Chapter 3, the order of rule applications does not matter for in-
vertible rules: if we can apply a rule, we can commit to the application without worry.
If we use one-closed alternation between rules, we get the prover K ;s

Kclosed = “X'<(J—HIdH N H v HK);X)!SkiP

If the input has a closed tableau, then no redundant backtracking takes place. If the



§6.1 K 39

input does not have a closed tableau then K ,s.4 will try every possible combination
of the (L), (Id), (A) and (V) rules looking for a closed tableau that does not exist.

If we instead use one-open alternation, we get an unsound prover:
Kopen = nX.((L|Id] A |V |K); X)!Skip

Suppose we give Kype, the input set { L, Op}. Our tactic will choose to apply (L),
generating a closed result. The one-open alternation means that it will not return this
result, but continue trying alternative rules until it comes to the (K) rule. Applying the
(K) rule then generates the denominator {p}, which has an open result. The one-open
alternation then returns open as the result of the search, which is incorrect. Note that
the problem does not invalidate our result about committing to invertible rules. The
unsoundness comes from how the tactic combinator for one-open alternation collects
results. It is simply the incorrect choice for this situation.

We will benchmark Ky along with our other provers, but for the remaining
provers we will only use one-success alternation between invertible rules.

We can lift the alternation from the denominator of the (V) rule and move it into
the tactics by using the following pair of projective rules:

VY, Z
(VZ)W
These rules have the following encoding:

(V1) = (@ V ; Z, (Schemas, {{@; Z}}), always, noaction, OneSuccess, OneSuccess)
(V2) = (@ Vv ; Z, (Schemas, {{; Z}}), always, noaction, OneSuccess, OneSuccess)

We define another prover, K;, using the following tactic:

Ky = pX.((LLUAIAY(V1|V2)IK); X)!Skip

We can also encode the recursive version of the (K) rule:

O, 0X;0Y; Z

4
(K) @; X||0Y; 00X

(K') = (Op; OX; 0Y; Z, (Schemas, {{p; X},{0X; OY}}), always, noaction, OneSuccess, OneClosed)

This replaces one-closed formula alternation with one-closed denominator alterna-
tion. Our prover K3 uses the same type of tactic as Kj:

Kz = uX.((LUdIAIVIK); X)!Skip

We can also use the projective-or rules (V1) and (V3) with our recursive-K rule, yield-
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ing the prover Ky:

Ky = pX.((LLUAIAI(V1|V2)IK'); X)!Skip

6.2 Bi-modal K

Recall from section 3.5 that bi-modal K is essectially the same as K with an additional
(K#) rule:
Yo, BX; 7
=0 x

(K¢) = (¢@;BX; Z, (Schemas, {{¢; X}}), always, noaction, OneClosed, OneSuccess)

With appropriate (minor) changes to the definitions of Formulae and Schemas, we can
construct a prover for bi-modal K. As with the projective-or rules given previously,
our prover may need to backtrack and select an alternate rule if we do not get a sat-
isfactory result. The prover K, uses one-open alternation as both the application of
(V1) and (V2) need to generate a closed result to produce an overall closed result.
It is sufficient for one of either (K{) or (K#) to generate a closed result, so we use
one-closed alternation in the tactic:

KO# = uX.(LUdIAINVI(KO||K®); X)!Skip

6.3 KT

As discussed in section 3.5.3, the construction of a terminating procedure for KT re-
quires the use of histories and side conditions to prevent infinite applications of the
(T) rule.

Our definitions of Formulae and Schemas are unchanged from those used for K,
but we let Histories = P(Formulae). We define functions for manipulating histories:

add : Partitions X Histories — Histories
add(partition, history) = history U partition ()
clear : Partitions x Histories — Histories
clear(partition, history) = ()
noaction : Partitions X Histories — Histories

noaction(partition, history) = history
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We also define the following functions for use as side conditions:

always : Partitions x Histories — {True, False}
always(partition, history) = True

notin : Partitions x Histories — {True, False}

True if partition(@) ¢ history

notin(partition, history) =
(p ¥) {False otherwise

We can then define the (L), (Id), (A) and (V) rules as before, using our KT-specific
versions of always and noaction for side conditions and actions.

The (T) rule is only allowed to apply if ¢ is not in the history of unboxed formulae.
Once applied, the newly-unboxed formula is added to the history:

Lo
@;0¢ — history : history U { ¢}

(T) (@ & history)

(T) = (Oo, (Schemas, {{p,O¢}}), notin, add, OneSuccess, OneSuccess)

Notice that instead of noaction, we use the add function to add whatever is in ¢ to the
history.

The (K) rule is essentially unchanged, but we need to clear the list of unboxed
formulae when it is applied:

(K) = (O@;0X; Z, (Schemas, {{¢; X} }), always, clear, OneClosed, OneSuccess)
This gives us the following prover for KT:

KT = uX.((LUA'AIVITIK); X)!Skip

6.4 Limitations

Our revised semantics are sufficiently expressive to emulate the basic features of the
TWB, but the TWB has some advanced features which we have not attempted to repli-
cate:

Upward Variables: The TWB allows the definition of additional variables which are
propagated from the leaves of a tableau towards the root. The status of a node
in the tableau (open or closed) is essentially a special case of upward variables.
Variables are local to a node in the search but a rule can access the rules of its
immediate children through the BACKTRACK directive.

Backtracking actions: A BACKTRACK directive can be attached to a rule to execute
arbitrary O’Caml code before the search returns to its parent.

Custom branch conditions: The TWB provides a BRANCH directive that can be at-
tached to a rule. BRANCH specifies a condition in a similar fashion to COND. The
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BRANCH condition checked whenever the search returns to a node to decide if
the search should proceed with the next denominator or return to the parent
rule application.

Conditional Branching: An additional branching operator | | | is provided. This op-
erator makes no assumptions about when to cease exploring child nodes or how
to combine results of an alternation. The user is expected to provide the branch
condition and a method of determining the node’s status by making use of the
BRANCH and BACKTRACK directives.

Extended Denominators: The TWB extends the concept of denominators by allowing
the user to specify history variables, upward variables and functions that return
formulae. The following is an example from [Abate 2007b] which implements
semantic braching for the (V) rule:

RULE Or
{ A v B}
A | B ; nnf_term (° A)
END

nnf_termis an O’Caml function defined alongside the tableau that converts a
formula into its negation normal form. An example of a rule that uses history
variables in its denominator is the S4 rule presented in [Abate and Goré 2009]:

RULE 5S4
{ <>P } ; 2

P ; UBXS
COND notin (<> P, DIAS)
ACTION [ DIAS := add(<> P, DIAS) ]

END

UBXS is the name of a history variable that was introduced by the TWB’s stan-
dard HISTORIES declaration. The contents of UBXS are copied into the new
formula set whenever the S4 rule is applied.

6.5 Experimental Results

We have implemented the system described in Chapter 5 as an O’Caml library called
“twbcore”. Twbcore is mostly implemented as an O’Caml functor called MkTableau.
A functor is a module that is parameterised by another module. MkTableau is passed
a module that names the types used for formulae and histories. The module param-
eter is also required to provide an implementation of a unification procedure and an
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instantiation procedure to instantiate formulae from a unifier. Together, this is suffi-
cient for twbcore to define a logic-specific type for tableau rules and an implementa-
tion of our search procedure that is specialised for that particular logic. Twbcore also
provides a polymorphic type for tactics and substitution and expansion operations
on tactics that match the description given in Section 5.2. Twbcore is as close to a di-
rect translation of the procedures from Chapter 5 as possible. We do not attempt any
“tricks” to improve run-time performance.

We then used twbcore to implement the provers for the modal logic K from Section
6.1: Kijosed, K1, Ko, K3 and K4 and the prover KT from Section 6.3.

In this section, we present and discuss the results of benchmarking our provers for
the logics K and KT. We use the standard benchmark suite provided by the authors of
the Logic Work Bench. The suite is descibed in [Heuerding and Schwendimann 1996].

6.5.1 The LWB benchmarks

In [Heuerding and Schwendimann 1996] three sets of benchmark formulae are pre-
sented: one each for the logics K, KT and S4. Each benchmark consists of 9 classes of
provable formulae and 9 classes of unprovable formulae. Within each class, there are
21 formulae of increasing complexity but similar basic structure.

The benchmark method is also prescribed by [Heuerding and Schwendimann 1996].
Each prover being benchmarked is run against the formulae of each class in increasing
order of complexity. We run the provers with a timeout of 100 seconds and note the
most complex formula from each class that was successfully decided. We also record
the running times for each formula.

We also present the basic details of our twbcore system in the format specified by
[Heuerding and Schwendimann 1996]:

Prover: We used provers built from the still-in-development twbcore library, ver-
sion 0.42. Twbcore provides a logic-agnostic tableau search procedure which
we combine with specific tableau rules and a strategy to construct a complete
prover. Twbcore is written in O’Caml and compiled with ocamlc version 3.10.0
running on Ubuntu 8.04 LTS (x86_64).

Availability: Twbcore has not yet been released. The sources for the provers given
here will be included as examples in the source distribution.

Additional Facilities: Twbcore is intended to be the core of a logic-agnostic toolkit
for building tableau-based provers. As such, it favours flexibility over speed.
Twbcore is single-threaded.

Hardware: All tests were conducted on a Pentium Dual-Core E5200 running at 2.5GHz
with 2GB of RAM.

Timing Method: An external driver script written in Python that extracts the formula
from the input file and feeds it to the prover. We negated the input formulae in
a separate preprocessing step. Provable formulae will then generate a closed
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result and non-provable formulae an open result. The driver script also mea-
sured the running time of the program by computing difference in wall-clock
time. The timeout was enforced by setting up a SIGALRM signal to be sent to
the driver after the 100 seconds had expired. The driver script is provided in
Appendix A

We summarise the collected data here, but full tables of collected data are pre-
sented in Appendix A.

6.52 K

Recall our conjecture from Section 6.1.2 that formulae with an open tableau will cause
large amounts of redundant backtracking for K.s.s, while formuale with a closed
tableau will not have redundant backtracking. Our results show the conjecture to be
correct. The unprovable formulae in Figure 6.2 are designed to have open tableau (af-
ter negation) and we see that K, is significantly less capable when compared to the
other provers that use one-success alternation between rules. We also notice that the
four variants K; through K4 are approximately equally capable: This is not a surpris-
ing result but it is encouraging. We would expect alternation to have approximately
the same cost regardless of its level in the search procedure (rule-choice, formula-
choice or denominator-choice). We do not want future end users to be pressured into
selecting a particular level of alternation based on real or imagined efficiency benefits.

Kclosed Kl KZ K3 K4
k_branch_n 0 1 2 3 2

k.d4n 3 4 4 4 4
k.dumn 4 18 18 17 17
k_grzn 2 8 8 8 8
k.linn 2 3 3 3 3
k_path.n 2 6 5 6 5
k_phn 2 3 3 3 3
k_polyn 2 18 18 18 18
k_t4p_n 1 7 7 6 6

Figure 6.2: Hardest solvable unprovable K formulae (by class and prover).

For provable K formulae, we see some interesting results. K54 is slightly less
capable than the other K systems. We conjecture that this is a lesser version of the
effect observed with unprovable formulae: If the K o5y prover chooses to explore a
branch that turns out to be open, it will perform some redundant backtracking within
that branch to confirm that the branch is indeed open. As the whole tableau closes,
the scope for redundant backtracking is restricted.

The other interesting result is the behaviour of K3 and K4 on the k_poly_p set. The
only difference between these provers and K; and K; use the recursive version of the
(K) rule that can commit to its choice of {-formulae. It would therefore appear that
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our mechanism for backtracking over formula choice is significantly less efficient than
our other forms of backtracking.

IKclosed K Ky Ky Ky
k_branch_p 1

—_
—_
—_
—_

k_d4 p 5 5 5 5 5
k_dum_p 4 7 7 7 7
kgrzp 4 6 6 6 6
klin_p 5 5 5 5 5
k_path_p 2 2 2 2 2
k_php 2 2 2 2 2
k_poly_p 5 5 5 13 13
k_tdp_p 2 6 6 5 5

Figure 6.3: Hardest solvable provable K formulae (by class and prover).

6.5.3 KT

Our implementation of KT was not intended to be a serious prover but rather a proof
of concept, and this shows in the complexity of formulae it was able to evaluate within
the 100 second time limit (Figure 6.4). Our prover used O’Caml’s built-in linked-
list data type to implement the history of examined [J-formulae (see Section 3.5.3),
which has an O(n) membership test. The membership test is exectued every time
the prover attempts to apply the (T) rule. This means that the “saturation step”,
where the prover applies the (L), (Id), (A), (V) and (T) rules as much as possible,
is O(n?) in the number of ()-formulae. The functional set data structure provided by
the O’Caml standard library has O(logn) membership testing and insertion, which
would reduce the cost of saturating [J-formulae to O(nlogn) in the number of -
formulae. (Of course, the saturation step is still O(2") in the number of V-connectives
in the formula set). With such low numbers of solved formulae in each class, there is

Class name Hardest formula Class name Hardest formula
kt 45 n 1 kt 45_p 3
kt_branch n 3 kt_branch_p 2
kt_dum n 3 kt_dum_p 1
kt_grzn > 20 kt_grz_p 0
kt_-md-n 4 kt-md_p 4
kt_path.n 2 kt_path_p 1
kt_phn 3 kt_ph_p 2
kt_poly_n 1 kt_poly_p 1
kt_t4p n 2 kt_t4p_p 1
(a) Unprovable formulae (b) Provable formulae

Figure 6.4: Hardest solvable KT formulae (by class).

not enough data here to make any reasonable inferences about the scaling of our KT
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prover. Since so many classes of formulae scaled so poorly, we do not attempt to draw
any conclusions about the prover and recognise it for what is: a proof of concept.



Chapter 7

Conclusion

We provide a short summary of the contributions of this thesis:

e From our study of the TWB have identified what we believe to be the essential
features of a generic tableau-driven prover.

e We have identified multiple shortcomings with the specification of the TWB and
provided a high-level, informal specification that encompasses just these essen-
tial features.

e We have shown that our system is sufficiently expressive to permit the imple-
mentation of some simple modal logics with distinct backtracking and history-
checking properties, and that it allows significant flexibility in how the user
chooses to express them.

e We have tested our provers against the Logic Work Bench’s standard benchmark
suites and examined how different tactics can significantly impact the running
time of a prover or even render it logically unsound.

7.1 Further Work

We outline multiple areas where our work could fruitfully be extended:

o Test the expressive power of our system further, by attempting to implement
more complex logics.

e Our semantics describe how to compute the result of trying to build a tableau
of a formula set and our sample implementation is essentially a direct transla-
tion of this. It would be useful for our implementation to optionally store the
tableau as it is explored, to enable the generation of a witness that shows why
the computed result is correct.

e Decouple rule application from the rest of the search procedure and allow it to
be used standalone as a generic tool to manually inspect tableau systems.

47
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Conclusion

Extend the front-end parser of the current TWB to support the three types of
alternation (one-success, one-open and one-closed) at all levels and replace the
backend with our implementation.

Using our pseudocode as a starting point, formalise the semantics of our generic,
depth-first tableau search.

Extend the semantics presented in Chapter 5 to incorporate the advanced fea-
tures of the TWB described in Section 6.4.

Improve performance of the implementation. Although speed was not our pri-
mary concern, a revised system must be fast enough for day-to-day usage to be
a viable replacement.

Extend the procedure to support multi-pass decision procedures, something that
the TWB cannot yet do.



Appendix A

Running Times and Driver Script

This chapter contains the running time data collected for the benchmarks in Section
6.5, along with a listing of the driver script used to generate them. All running times
are in seconds. We do not bother collecting running times beyond the first 100-second
timeout, which we indicate with a —.

Al K

A.1.1 Unprovable Formulae

A.1.1.1 k_branch.n

Formula Number K.y Ki K, Kz Ky

1 - 0.07 0.01 0.07 0.10
2 - 155 1.03 1.55
3 - 78.4 -

Al112 kdd4n

Formula Number Kclosed Kl Kz Kg K4
1 001 000 0.00 0.00 0.00
2 075 003 005 0.04 0.04
3 2905 051 060 060 0.71
4
5

- 9.18 1140 11.59 14.36

49
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A113 k.dumn

Formula Number K., Kj K, Kj Ky

1 061 004 005 005 0.05
2 324 005 005 0.05 0.06
3 303 004 005 0.05 0.06
4 1927 005 005 0.05 0.08
5 - 0.05 006 0.06 0.07
6 0.07 008 0.08 0.08
7 009 010 010 011
8 014 015 016 0.17
9 023 025 026 028
10 042 044 048 0.50
11 077 081 087 092
12 149 154 169 177
13 287 299 329 342
14 569 591 645 693
15 11.17 11.58 12.73 13.38
16 2228 23.06 2540 26.78
17 4420 46.04 51.52 53.75
18 89.47 93.67 - -
19 - -

Al114 kgrzn

Formula Number K., Ky Ky Kj Ky

1 124 007 009 0.09 010
2 228 016 020 018 0.20
3 - 023 028 029 033
4 008 010 010 0.11
5 040 048 050 0.59
6 012 013 015 017
7 10.54 1395 13.70 16.29
8 012 014 015 0.16
9

A.1.1.5 klin.n

Formula Number Kclosed K] Kz Kg K4
1 0.00 000 0.00 0.00 0.00
2 240 005 0.06 0.05 0.06
3 - 134 170 150 1.75
4




§A.1 K

51

A.11.6 k_pathn

Formula Number Kclosed Kl Kz K3 K4
1 024 0.07 0.09 0.07 0.08
2 1692 077 091 078 0.86
[h] 3 - 294 361 298 335
4 12.03 1494 1218 1393
5 3092 39.23 31.20 35.09
6 95.89 - 99.25 -
7 - -
A117 kphn
Formula Number K. x Ki Ky K3z Ky
1 0.00 0.00 0.01 0.00 0.00
2 159 001 0.01 0.01 0.01
3 - 445 6.74 451 6.09
4 - - - -
A.118 k_polyn
Formula Number Kclosed Kl KZ Kg K4
1 0.04 0.01 0.01 0.00 0.01
2 048 0.02 0.02 0.02 0.02
3 - 0.08 0.08 0.08 0.08
4 014 015 014 0.15
5 039 041 038 040
6 061 066 058 0.63
7 1.37 146 128 1.37
8 195 207 183 197
9 376 4.02 348 373
10 5.07 546 4.69 5.07
11 894 957 819 8.80
12 11.55 1235 10.65 11.42
13 18.86 20.25 17.25 18.66
14 23.71 25.57 21.71 23.34
15 36.66 39.24 33.34 35.76
16 4488 48.39 40.88 43.80
17 66.05 70.85 60.59 64.62
18 79.60 84.70 72.66 77.46

—_
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Al119 ktipn

Formula Number Ky.q Ky K, Kj Ky

0.80 001 001 0.01 0.01
- 0.08 008 0.08 0.09
029 031 038 041
121 129 164 177
483 517 695 7.50
19.53 20.67 30.23 32.26

7842 82.55 - -

I ON Ul WL DN -

A.1.2 Provable Formulae
A.1.2.1 k_branch p

Formula Number K0 Ki; Ky K3 Ky
1 3962 09 144 097 144
) - - - - -

A122 kd4p

Formula Number Kp.q Kj K, K3 Ky

0.00 001 001 0.00 0.01
0.07 0.07 0.09 007 0.09
0.35 033 042 035 044
777 510 657 513 6.49
61.65 3219 40.61 4393 54.89

N Ul = W IN -

A123 k.dum_p

Formula Number Kclosed Kl Kz K3 K4

007 0.03 0.04 0.03 0.04
0.86 019 022 020 024
0.86 019 022 020 024
11.09 094 112 1.02 122
- 328 403 349 426
11.77 1449 13.00 15.89
32.53 4043 35.46 43.77

O IO Ul WO N -
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Al124 kgrzp

Formula Number Kclosed Kl Kz K3 K4
022 009 010 011 013
054 018 021 021 025
153 052 061 062 072
1418 237 275 280 3.24
- 11.52 1350 14.45 16.69
69.03 80.49 83.20 96.51

NG W N -

A1.25 klinp

Formula Number K0 Ki Ky Kj Ky

0.00 0.00 0.00 0.00 0.00
0.01 0.01 0.01 0.01 0.01
0.10 0.10 0.12 0.0 0.12
096 096 1.15 1.01 1.20
834 833 998 877 1051

NGl W IN -

A1.2.6 kpathp

Formula Number K. ox Ki Ky Kz Ky
1 0.00 000 0.00 0.00 0.00
2 428 421 555 4.69 6.06
3 - _ - - -

A1.2.7 kphp

Formula Number Kclosed Kl KZ Kg K4
1 0.00 0.00 000 0.00 0.00
2 004 0.05 007 046 0.07
3 - - - - -
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A.1.2.8 k_polyp
Formula Number Kclosed Kl Kz Kg K4

1 0.01 001 001 001 0.01
2 017 017 022 0.06 0.06
3 0.9 069 093 014 014
4 876 875 1272 057 057
5 2888 28.80 4314 1.02 1.02
6 - - - 289 289
7 456 4.56
8 1042 1042
9 15.16 15.16
10 30.31 30.31
11 41.75 41.75
12 75.68 75.68
13 99.83 99.83
14 - -

A129 ktdpp
Formula Number K,eq  Kq Ky Ks Ky

1 021 012 013 013 015
2 1763 087 101 1.03 1.20
3 - 458 534 509 5.88
4 11.53 13.38 21.17 24.45
5 27.77 3232 7428 85.62
6 7111 8241 - -

7 - -

A2 KT

A.2.1 Unprovable Formulae
A211 kt45n

Formula Number Time (seconds)
1 0.65
o) -

A.2.1.2 ktbranch.n

Formula Number Time (seconds)
1 0.08
2 1.09
3 81.43
4
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A21.3 kt.dumn

Formula Number

Time (seconds)

1

2
3
4

A214 ktgrzn

Formula Number

0.10
72.81
76.39

Time (seconds)

O 00 NI O Ul i WO N -

NN = o b e e ) e e e e
— O 0O O NI ONOl bk WDN -k O

A.215 ktmdn

Formula Number

0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.10
0.11
0.13
0.16
0.19
0.26
0.27
0.30

Time (seconds)

Ol = W N =

0.00
0.00
0.00
0.29
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A.2.1.6 ktpathn

Formula Number

Time (seconds)

1
2
3

A.217 ktphn

Formula Number

0.34
27.05

Time (seconds)

1

2
3
4

A.2.1.8 ktpolyn

Formula Number

0.00
0.01
0.84

Time (seconds)

1
2

A.219 kttdpn

Formula Number

14.91

Time (seconds)

1
2
3

A.2.2 Provable Formulae
A221 ktd5p

Formula Number

0.03
16.45

Time (seconds)

1

2
3
4

A.2.2.2 kt branch_p

Formula Number

0.19
4.92
82.07

Time (seconds)

1
2
3

0.07
53.72
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A.2.23 ktdum_p

A224

A225

A.2.2.6

A227

A.2.28

A2.29

kt_grz_p

kt.-md_p

kt_path_p

kt_ph_p

kt_poly_p

kt_t4p_p

Formula Number

Time (seconds)

1
2

Formula Number

44.29

Time (seconds)

1

Formula Number

Time (seconds)

Ol = W N =

Formula Number

0.00
0.00
0.02
3.34

Time (seconds)

1
2

Formula Number

0.00

Time (seconds)

1
2
3

Formula Number

0.00
0.03

Time (seconds)

1
2

Formula Number

1.26

Time (seconds)

1
2

5.44
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A.3 Driver Script

The following listing shows the driver that we used to time our provers. We expect it
to be comprehensible by anyone with experience programming in Python. Note that
the signal module does not work on Windows systems.

#!/usr/bin/python

import os

import signal
import subprocess
import sys

import time

timeout = 100
_, prover, fname = sys.argv
lines = open(fname, ’'r’).readlines|()

class Alarm(Exception) :
pass
def alarm_thrower (signum, frams):
raise Alarm
signal.signal (signal.SIGALRM, alarm_thrower)

print "testing %s with %s" % (fname,prover)
num = 1
for line in lines:
child = subprocess.Popen ([’ /usr/bin/ocamlrun’, prover],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
try:
signal.alarm(timeout)
t0 = time.time ()
output = child.communicate (line) [0]
print output
signal.alarm(0)
tl = time.time ()
dt = tl1l - tO0
print "%d: time: %f" % (num, dt)
num += 1
except Alarm:
print "%d: timeout." % num
0s.kill(child.pid, signal.SIGKILL)
break
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